TPM151-10 [A[

Универсальный программный измеритель-регулятор

руководство по эксплуатации

Содержание

Введение	
Аббревиатуры, используемые в руководстве	4
1 Назначение прибора	5
Технические характеристики и условия эксплуатации	6
3 Описание прибора	
4 Конструкция прибора	21
5 Лицевая панель прибора. Индикация и управление	22 23
6 Меры безопасности	26
7 Монтаж и подключение прибора	27 27 28
8 Программирование прибора	34
9 Настройка сетевого интерфейса RS-485	36 36 36
10 Программа «Конфигуратор ТРМ151»	39 39 ювка
10.4 Причины отсутствия связи прибора с компьютером и способы их устран 10.5 Уровни доступа	нения41 42 42 48
10.9 Программа «Быстрый старт TPM151-10»	

Содержание

11 Программирование с помощью кнопок на лицевой панели прибора	53
11.1 Соответствие символов на цифровом индикаторе буквам латинского алфави	
11.2 Общие принципы программирования	
11.3 Схемы задания параметров	5
11.4 Задание параметров программ технолога в режиме «Быстрого»	
программирования	
12 Эксплуатация прибора ТРМ151-10	
12.1 Включение прибора	
12.2 Выбор текущей программы и текущего шага для выполнения	
12.3 Запуск и остановка программы технолога	
12.4 Режим ручного управления Уставкой	
12.5 Режим ручного управления выходной мощностью	
12.6 Автоматическая настройка ПИД-регулятора	
12.7 Аварийные ситуации и их возможные причины	
12.8 Информационные сообщения на цифровых индикаторах12.9 Принудительная перезагрузка прибора	
13 Техническое обслуживание	77
14 Маркировка и упаковка	77
15 Правила транспортирования и хранения	77
Комплектность	78
17 Гарантийные обязательства	78
Приложение А. Габаритные чертежи	79
Приложение Б. Схемы подключения	
Приложение В. Перечень программируемых параметров	
Приложение Г. Некоторые типы первичных преобразователей	
Г.1 Термопреобразователи сопротивления	
Г.2 Термоэлектрические преобразователи (термопары)	
Приложение Д. Подключение термопреобразователей сопротивления по двухпровод	
СХЕМЕ	
Приложение Е. Цифровая фильтрация и коррекция измерений	
Е.1 Цифровая фильтрация измерений	
Е.2 Коррекция измерительной характеристики датчиков	
Приложение Ж. ПИД-регулятор и параметры его настройки	
Ж.1 Общие принципы ПИД-регулирования. Параметры ПИД-регулятора	
Ж.2 Определение параметров предварительной настройки регулятора	
Приложение И. Краткое описание модификаций прибора ТРМ151	95
Лист регистрации изменений	98

Настоящий документ является репрезентативным вариантом руководства по эксплуатации TPM151-10, идентичным по содержанию эталону руководства по эксплуатации КУВФ.421214.003 РЭ, прошедшему сертификацию на соответствие.

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, работой и техническим обслуживанием программного универсального измерителя-регулятора TPM151-10 (в дальнейшем по тексту именуемого «прибор», «прибор TPM151-10» или «TPM151-10»).

Руководство по эксплуатации распространяется на прибор ТРМ151-10, выпущенный по ТУ 4211-009-46526536-03.

Прибор TPM151-10 изготавливается в нескольких вариантах исполнения, отличающихся друг от друга типом корпуса и типом встроенных элементов, служащих для управления исполнительными механизмами. Модификации прибора соответствует условное обозначение:

Конструктивное исполнение:

- **H** корпус настенного крепления с размерами $130 \times 105 \times 65$ мм и степенью защиты корпуса IP44;
- **Щ1** корпус щитового крепления с размерами $96 \times 96 \times 70$ мм и степенью защиты со стороны передней панели IP54.

Габаритные чертежи корпусов различных типов приведены в Приложении А.

Тип выходного элемента 1:

- Р реле электромагнитное;
- К оптопара транзисторная структуры n-p-n-типа;
- С оптопара симисторная:
- Т выход для управления внешним твердотельным реле.

Тип выходного элемента 2:

- Р реле электромагнитное;
- **К** оптопара транзисторная структуры n-p-n-типа;
- С оптопара симисторная;
- Т выход для управления внешним твердотельным реле.

Пример полного названия прибора при заказе:

TPM151-H.CP.10

Приведенное условное обозначение указывает, что изготовлению и поставке подлежит измеритель-регулятор TPM151-10 в корпусе настенного крепления, оснащенный симисторной оптопарой в качестве первого выходного элемента и электромагнитным реле в качестве второго выходного элемента.

Внимание! Прибор TPM151-10 может быть переконфигурирован под прибор другой модификации TPM151-хх. Краткое описание модификаций прибора TPM151 приведено в Приложении И. Изменение конфигурация осуществляется с помощью программы «Конфигуратор TPM151» на ПК (см. раздел 10).

Кроме того, на базе TPM151-10 можно создать нестандартную конфигурацию, содержащую элементы разных модификаций. За подробной консультацией пользователь может обратиться по адресу trm151@owen.ru в группу технической поддержки OBEH.

Аббревиатуры, используемые в руководстве

 АНР
 –
 автонастройка Регулятора;

 ВЭ
 –
 выходной элемент;

 ИМ
 –
 исполнительный механизм;

 ПК
 –
 персональный компьютер;

ТП – термопара (преобразователь термоэлектрический);

TC — термопреобразователь сопротивления;

 ТСМ
 –
 термопреобразователь сопротивления медный;

 ТСП
 –
 термопреобразователь сопротивления платиновый;

НСХ – номинальная статическая характеристика; ЦАП – цифроаналоговый преобразователь;

ЦИ – цифровой индикатор.

1 Назначение прибора

- 1.1 ТРМ151-10 предназначен для построения автоматических систем контроля и управления производственными технологическими процессами в различных областях промышленности, сельского и коммунального хозяйства и др.
 - 1.2 Прибор ТРМ151-10 выполняет следующие основные функции:
 - измерение одной или двух физических величин, контролируемых входными первичными преобразователями;
 - цифровую фильтрацию для уменьшения влияния промышленных импульсных помех на результат измерения;
 - коррекцию измеренных величин для устранения погрешностей первичных преобразователей;
 - отображение результатов измерений или вычислений на встроенном светодиодном четырехразрядном цифровом индикаторе;
 - регулирование одной измеренной физической величины по ПИД-закону:
 - управление 3-х позиционнными ИМ:
 - изменение уставки регулируемой величины по заданной технологической программе, а также как функции другой величины;
 - формирование аварийного сигнала при обнаружении неисправности первичных преобразователей с отображением его причины на цифровом индикаторе;
 - формирование аварийного сигнала при выходе регулируемой величины за допустимые пределы;
 - отображение на встроенном светодиодном цифровом индикаторе текущих значений параметров технологической программы и мощности, подаваемой на исполнительный механизм;
 - формирование команды ручного управления исполнительным механизмом с клавиатуры прибора;
 - передачу в сеть RS-485 текущих значений измеренных или вычисленных величин, а также выходной мощности регулятора и параметров программы технолога;
 - изменение значений программируемых параметров прибора с помощью клавиатуры управления на его лицевой панели;
 - изменение значений параметров с помощью компьютерной программы-конфигуратора при связи с компьютером по RS-485;
 - сохранение заданных программируемых параметров в энергонезависимой памяти при отключении напряжения питания TPM151-10.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики прибора

Основные технические характеристики прибора TPM151-10 приведены в таблицах 2.1 - 2.3.

Таблица 2.1 – Общие характеристики

Наименование	Значение	
Диапазон переменного напряжения питания:		
напряжение, В	90245	
частота, Гц	4763	
Потребляемая мощность, ВА, не более	6	
Количество входов для подключения датчиков	2	
Время опроса одного канала, с, не более	0,3	
Количество выходных элементов	2	
Интерфейс связи с компьютером	RS-485	
Протокол передачи данных по RS-485	OBEH	
Степень защиты корпуса		
для корпуса Щ1 (со стороны лицевой панели)	IP54	
для корпуса Н	IP44	
Габаритные размеры прибора, мм		
корпус Щ1	$(96 \times 96 \times 70) \pm 1$	
корпус Н	$(130 \times 105 \times 65) \pm 1$	
Масса прибора, кг, не более	0,5	
Средний срок службы, лет 8		

Таблица 2.2 – Входные первичные преобразователи

Наименование	Диапазон	Разрешающая	Предел
	измерения	способность	основной
			приведенной
			погрешности
Термопреобр	азователи сопротивл	ения по ГОСТ Р 50353	3-92
TCM 50M $W_{100} = 1,426$	-50+200 °C	0,1 °C	
TCM 50M $W_{100} = 1,428$	-190+200 °C	0,1 °C	
ТСП 50П $W_{100} = 1,385$	-200+750 °C	0,1 °C	
ТСП 50П W ₁₀₀ = 1,391	-200+750 °C	0,1 °C	
TCM 100M $W_{100} = 1,426$	-50+200 °C	0,1 °C	
TCM 100M $W_{100} = 1,428$	-190+200 °C	0,1 °C	
ТСП 100П $W_{100} = 1,385$	-200+750 °C	0,1 °C	
ТСП 100П $W_{100} = 1,391$	-200+750 °C	0,1 °C	±0,25 %
TCH 100HW ₁₀₀ = 1,617	-60+180 °C	0,1 °C	±0,23 /0
TCM 500M $W_{100} = 1,426$	-50+200 °C	0,1 °C	
TCM 500M $W_{100} = 1,428$	-190+200 °C	0,1 °C	
ТСП 500П $W_{100} = 1,385$	-200+650 °C	0,1 °C	
TCΠ 500Π W ₁₀₀ = 1,391	-200+650 °C	0,1 °C	
TCH 500H $W_{100} = 1,617$	-60+180 °C	0,1 °C	
TCM $1000MW_{100} = 1,426$	-50+200 °C	0,1 °C	
TCM $1000MW_{100} = 1,428$	-190+200 °C	0,1 °C	

Продолжение таблицы 2.2

Наименование	Диапазон измерения	Разрешающая способность	Предел основной приведенной погрешности
TCM 1000ΠW ₁₀₀ = 1,385	-200+650 °C	0,1 °C	
TCM $1000\Pi W_{100} = 1,391$	-200+650 °C	0,1 °C	±0,25 %
TCM 1000HW ₁₀₀ = 1,617	-60+180 °C	0,1 °C	
Термопре	образователи сопро	тивления по ГОСТ 6	651-59
TCM rp. 23	-50+200 °C	0,1 °C	±0,25 %
	Термопары по ГОС	T P 8.585-2001	
TXK(L)	-200+800 °C	0,1 °C	
ТЖК (Ј)	-200+1200 °C	1 °C	
THH (N)	-200+1300 °C	1 °C	
TXA (K)	-200+1300 °C	1 °C	
ТПП (S)	0+1600 °C	1 °C	
ТПП (R)	0+1600 °C	1 °C	±0,5 %
TПP (B)	+200+1800 °C	1 °C	
TBP (A-1)	0+2500 °C	1 °C	
TBP (A-2)	0+1800 °C	1 °C	
TBP (A-3)	0+1600 °C	1 °C	
TMK (T)	-200+400 °C	0,1 °C	
Сигналы по	остоянного напряжен	ия и тока по ГОСТ 2	6.011-80
05,0 мА	0100 %	0,1 %	
020,0 мА	0100 %	0,1 %	
4,020,0 мА	0100 %	0,1 %	±0,25 %
-50,0+50,0 мВ	0100 %	0,1 %	
01,0 B	0100 %	0,1 %	
Датчики положения задвижек			
резистивный (0900 Ом)	0100	1 %	
резистивный (02 кОм)	0100	1 %	±0,25 %
токовый 0(4)20 мА	0100	1 %	10,20 /0
токовый 05 мА	0100	1 %	

Примечания

Таблица 2.3 - Выходные элементы

Обозначение при заказе	Наименование	Электрические характеристики
Р	Реле электромагнитное	4 А при напряжении не более 220 В 50 Гц и соз ф > 0,4
К	Оптопара транзисторная	400 мА при напряжении
	n-р-n типа	не более 60 В постоянного тока
С	Оптопара симисторная	50 мА при напряжении до 600 В (в
		импульсном режиме при t _{имп} < 5 мс и
		частоте 100 Гц – до 1 А)
т	Выход для управления внешним	Выходное напряжение 46 В
Į.	твердотельным реле	Максимальный выходной ток 100 мА

¹⁾ W_{100} – отношение сопротивления датчика, измеренное при температуре 100 °C, к его сопротивлению, измеренному при 0 °C.

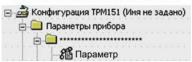
²⁾ Для работы с прибором могут быть использованы только изолированные термопары с незаземленными рабочими спаями.

2.2 Условия эксплуатации прибора

Прибор эксплуатируется при следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- температура окружающего воздуха от +1 до +50 °C;
- верхний предел относительной влажности воздуха: 80 % при +25 °C и более низких температурах без конденсации влаги;
- атмосферное давление от 86 до 106,7 кПа.

По устойчивости к климатическим воздействиям при эксплуатации прибор TPM151-10 соответствует группе исполнения B4 по ГОСТ 12997-84.


По устойчивости к механическим воздействиям при эксплуатации прибор TPM151-10 соответствует группе исполнения N1 по ГОСТ 12997-84.

Габаритные и установочные размеры прибора приведены в Приложении А.

3 Описание прибора

В данном разделе приведены программируемые параметры для каждого элемента структурной схемы. Задание значений параметров удобнее всего производить с помощью программы «Конфигуратор ТРМ151» (см. раздел 10).

Фрагмент экранного интерфейса разъясняющий путь к устанавливаемым параметрам в перечне параметров программы "Конфигуратор ТРМ151"

Возможно также программирование с помощью кнопок на лицевой панели прибора (см. раздел **Ошибка! Источник ссылки не найден.**). Этот способ сложнее, но не требует подключения прибора к ПК.

3.1 Схема прибора

3.1.1 Структурная схема прибора приведена на рисунке 3.1.

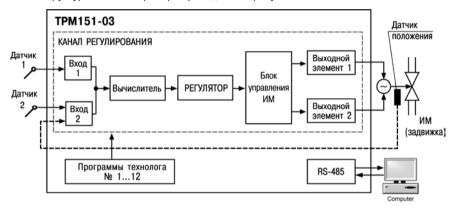


Рисунок 3.1 - Структурная схема ТРМ151-10

Прибор ТРМ151-10 – одноканальный, осуществляет пошаговое регулирование трехпозиционным ИМ (задвижкой) с датчиком положения или без него.

3.2 Канал регулирования

Канал регулирования (далее — «Канал») предназначен для регулирования одной физической величины (температуры, давления и т. д.) по результатам измерения датчиком, подключенным к Входу 1.

Возможно также регулирование вычисленной величины (влажности, среднего значения и т.д.) из значений, измеренных на Входе 1 и Входе 2. При этом регулирование производится без использования датчика положения задвижки.

Для регулирования в Канале используется исполнительный механизм типа «нагреватель», который позволяет увеличивать значение регулируемой величины. Управление ИМ производится при помощи ВЭ 1 и ВЭ 2, выбранных пользователем при заказе (э/м реле, оптотранзистор, оптосимистор).

Примечание — Пользователь может бесплатно заказать конфигурацию TPM151-10 для управления ИМ типа «холодильник» (уменьшает значение регулируемой величины). Для этого необходимо обратиться к специалистам по адресу trm151@owen.ru.

3.3 Пошаговое регулирование. Программа технолога

TPM151-10 предназначен для пошагового управления технологическим процессом, который может включать следующие стадии (на примере регулирования температуры):

- поддержание заданного значения (уставки) температуры;
- нагрев до заданного значения температуры или в течение заданного времени;
- охлаждение до заданного значения температуры или в течение заданного времени.

При нагреве можно задать скорость нагрева или мощность, подаваемую на исполнительный механизм.

Охлаждение осуществляется путем отключения нагревателя, при этом можно ограничить скорость охлаждения.

Последовательность этапов технологического процесса называется Программой технолога (или просто Программой), а каждый этап — Шагом Программы технолога.

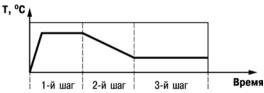


Рисунок 3.2 — Пример Программы технолога для TPM151-10

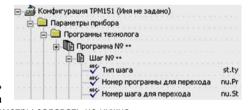
Пример Программы технолога,

представленной в виде графика изменения уставок во времени, приведен на рисунке 3.2.

Всего в ТРМ151-10 можно задать до 12 независимых Программ технолога по 10 Шагов каждая.

Примечание — Пользователь может создать Программу более чем из 10 Шагов или Программу, работающую по бесконечному циклу, за счет использования «шага с переходом» (см. ниже).

Для каждого Шага Программы технолога задаются следующие параметры:


- Уставка для регулируемой величны (см. п. 3.9);
- тип установки (с коррекцией по графику или без нее)
- тип Шага:
- длительность Шага или условие перехода на следующий Шаг.

3.3.1 Тип Шага Программы технолога

Шаг Программы может быть трех типов:

- «обычный шаг»;
- «шаг с переходом»;
- «конец программы».

Для «обычного шага» и «шага с переходом» задаются уставки и условия перехода на следующий Шаг, для «конца программы» эти параметры задавать не нужно.

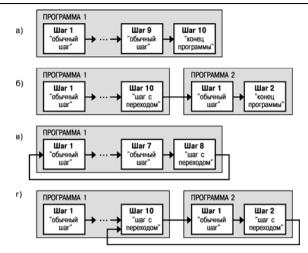
«**Шаг с переходом»** позволяет по окончании данного Шага перейти не к следующему за ним Шагу, а к Программе и Шагу, которые указаны параметрами **nU.Pr** и **nU.St**.

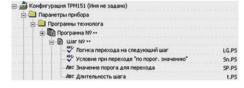
Используя «шаг с переходом», Вы можете создать:

- Программу, состоящую более чем из 10 Шагов (рисунок 3.3, б, г);
- Программу, работающую по бесконечному циклу (рисунок 3.3, в, г).

Примечание — Остановка Программы, работающей по бесконечному циклу, возможна только при помощи кнопок на лицевой панели прибора.

Нециклическая Программа в ТРМ151-10 (рисунок 3.3, а, б) состоит из последовательности «обычных шагов» и «шагов с переходом», которая заканчивается Шагом типа «конец программы».




Рисунок 3.3 – Примеры Программ, которые можно реализовать с помощью различных типов Шагов:

- (a) Программа из 9 Шагов и «конца программы»;
- (б) Программа из 11 Шагов и «конца программы»;
- (в) Программа из 8 Шагов, работающая по бесконечному циклу;
- (г) Программа из 12 Шагов (последние 3 Шага повторяются по бесконечному циклу)

3.3.2 Условия перехода на следующий Шаг

В TPM151-10 возможны четыре варианта логики перехода на следующий Шаг:

- «по значению» по достижении физической величиной значения, заданного параметром SP.PS;
- «по времени» по истечении **Длительности шага**:

- «по значению И времени» при выполнении одновременно двух первых условий;
- «по значению ИЛИ времени» при выполнении хотя бы одного из двух первых условий.

Логика перехода на следующий Шаг задается параметром LG.PS.

Длительность Шага при переходе «по времени» задается параметром t.PS.

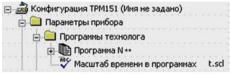
При переходе «по значению» текущее значение физической величины (значение с Вычислителя) сравнивается с заданным **SP.PS** и, если оно стало больше **SP.PS** (или меньше, это определяется параметром **Sn.PS**), происходит переход на следующий Шаг.

3.3.3 Шаги ОСТАНОВ и АВАРИЯ

Два последних Шага (№ 9 и № 10) последней Программы технолога (№ 12) зарезервированы в приборе для описания состояний прибора **АВАРИЯ** и **СТОП** (см. п. 5.3). Таким образом, последняя Программа оказывается короче других на 2 Шага.

Для описания состояния **СТОП (STOP)** в приборе зарезервирован Шаг № 10 Программы № 12. На этом Шаге пользователь может (см. параметры Уставки, п. 3.9):

3 Описание прибора


- отключить регулирование, задав нулевое значение мощности, подаваемой на Исполнительный механизм:
- подавать фиксированное значение мощности на ИМ:
- поддерживать регулируемую величину на уровне, заданном Уставкой.

Для описания состояния **АВАРИЯ** (FAIL) в приборе зарезервирован Шаг № 9 Программы № 12. На этом Шаге пользователь также может задать фиксированное нулевое или ненулевое значение мощности на ИМ.

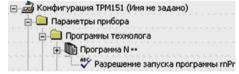
На заводе-изготовителе для Шагов № 10 (**«СТОП»**) и № 9 (**«АВАРИЯ»**) Программы № 12 установлено постоянное нулевое значение мощности, подаваемой на Исполнительный механизм. Пользователь может переконфигурировать эти специализированные Шаги по своему усмотрению.

3.3.4 Масштаб времени в Программах технолога

Параметром Масштаб времени пользователь может выбрать единицы, в которых будет задаваться длительность Шага в Программе: «часы/минуты» или «минуты/секунды». Данный параметр является общим для всех Программ.

Примечание. Задание длительности Шага одновременно в часах, минутах и секундах в TPM151-10 невозможно.

Пример. Задана Длительность шага t.PS «30.24».


Если Масштаб времени **t.SCL** – «часы/минуты», Шаг будет длиться 30 ч 24 мин 00 с.

Если Масштаб времени t.SCL – «минуты/секунды», Шаг будет длиться 30 мин 24 с.

3.3.5 Разрешение запуска Программы технолога

Запуск любой Программы можно разрешить или запретить, установив соответствующее значение параметра Разрешение запуска программы.

Рекомендуется запретить запуск всех Программ, которые не используются или не сконфигурированы.

3.4 Измерительные входы

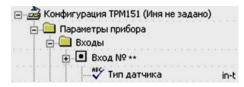
Измерительные Входы ТРМ151-10 являются универсальными, т.е. к ним можно подключать любые Первичные преобразователи (Датчики) из перечисленных в таблице 2.2. К Входам ТРМ151-10 можно подключить одновременно два Датчика разного типа в любых сочетаниях.

В качестве Датчиков могут быть использованы:

- термопреобразователи сопротивления;
- термопары (преобразователи термоэлектрические);
- активные преобразователи с выходным аналоговым сигналом в виде постоянного напряжения или тока;
- датчики положения исполнительных механизмов.

Для измерения температуры чаще всего используются термопреобразователи сопротивления или термопары (см. Приложение Г).

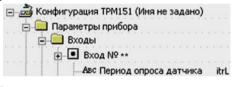
Активные преобразователи с выходным аналоговым сигналом в виде постоянного напряжения (-50...50 мВ, 0...1 В) или тока (0...5 мА, 0...20 мА, 4...20 мА) могут быть использованы для измерения как температуры, так и других физических величин: давления,


расхода, уровня и т.п.

Датчики положения предназначены для определения текущего положения (степени открывания или закрывания) запорно-регулирующих клапанов, задвижек, шаберов и т.п. при регулировании технологических параметров.

Наиболее часто в промышленности применяются датчики положения резистивного типа.

3.4.1 Тип датчика


Для каждого Входа необходимо задать тип подключенного к нему Датчика, выбрав его из предложенного списка (список соответствует таблице 2.2). Если пользователь не использует какой-либо Вход, необходимо установить значение параметра in-t «Датчик отключен».

Внимание! При неправильном задании значения параметра **Тип датчика** прибор будет производить некорректные измерения!

3.4.2 Периодичность опроса Датчиков

В ТРМ151-10 существует возможность установить период опроса Датчика на каждом Входе. Этот параметр определяет период тактов регулирования. Это означает, что изменение мощности, подаваемой на Исполнительный механизм, будет

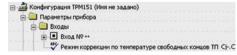
производиться с частотой, равной частоте опроса Входов.

Период опроса задается параметром itrL в секундах с точностью до 0,1 с.

ВНИМАНИЕ! Не допускается задавать значение периода опроса датчика менее 0,3 с.

3.4.3 Этапы обработки сигнала с Датчика на Входе

Сигналы, полученные от Датчиков, прибор преобразует (по данным НСХ) в текущие цифровые значения. Далее в процессе обработки сигналов осуществляются:


- цифровая фильтрация сигнала от помех;
- коррекция измерительной характеристики Датчика;
- автоматическая коррекция показаний прибора по температуре свободных концов ТП;
- масштабирование шкалы измерения (для Датчиков с аналоговым выходным сигналом).

Параметры цифровых фильтров, установленные на заводе-изготовителе, в большинстве случаев удовлетворяют условиям эксплуатации прибора. Если в процессе работы пользователь обнаружит сильное влияние внешних импульсных помех на результаты измерений, заводские значения параметров цифровых фильтров могут быть изменены (см. Приложение Е.1).

Заводские значения параметров коррекции измерительной характеристики Датчика (см. Приложение Е.2) можно изменять только в технически обоснованных случаях, так как при этом изменятся стандартные метрологические характеристики TPM151.

3.4.4 Автоматическая коррекция показаний прибора по температуре свободных концов термопар

Эта коррекция обеспечивает правильные показания прибора при изменении температуры окружающей его среды. Датчик температуры свободных концов термопар расположен внутри

прибора у клеммных контактов.

Коррекция включается/выключается параметром Сі-.С.

Отключение этого вида коррекции может быть необходимо, например, при проведении поверки прибора. При отключенной коррекции температура свободных концов термопар принимается равной 0 °C, и ее возможные изменения в расчет не принимаются.

3.4.5 Масштабирование шкалы измерения для активных преобразователей с аналоговым выходным сигналом

При работе с активными Датчиками, выходным сигналом которых является напряжение или ток, в приборе осуществляется масштабирование шкалы измерения. После масштабирования контролируемые физические величины отображаются непосредственно

величины отображаются непосредственно в единицах их измерения (атмосферах, килопаскалях, метрах и т.д.).

Для каждого такого Датчика необходимо установить диапазон измерения:

- нижняя граница диапазона измерения задается параметром Ain.L и соответствует минимальному уровню выходного сигнала Датчика;
- верхняя граница диапазона измерения задается параметром Ain.H и соответствует максимальному уровню выходного сигнала Датчика.

Дальнейшая обработка сигналов Датчика осуществляется в заданных единицах измерения по линейному закону (прямо пропорциональному при Ain.H > Ain.L или обратно пропорциональному при Ain.H < Ain.L).

Пример. При использовании датчика с выходным током 4...20 мА, контролирующего давление в диапазоне 0...25 атм., в параметре Ain.L задается значение 00,00, а в параметре Ain.H – значение 25,00 (см. рисунск 3.4).

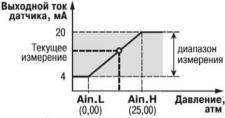


Рисунок 3.4 — Пример задания диапазона измерения активного датчика

После этого обработка и отображение показаний будет производиться в атмосферах.

3.5 Вычислитель

Вычислитель производит вычисление физической величины по одному или нескольким входным значениям. К Вычислителю можно подключить один или два измерительных входа прибора.

Данные с Вычислителя передаются одновременно Регулятору и Инспектору.

Для Вычислителя задаются следующие параметры:

- тип вычислителя (формула для вычисления);
- количество используемых Входов;
- количество знаков после десятичной точки;
- весовые коэффициенты измерительных входов при расчете взвешенной суммы.

3.5.1 Тип Вычислителя

Вычислитель производит **одну** математическую операцию с входными величинами. Типы Вычислителей (формулы для вычисления) и количество входных величин, используемых в этих формулах, представлены в таблице 3.1.



Таблица 3.1 – Тип Вычислителя и количество используемых им входов

Симв. На ЦИ2*	Тип Вычислителя	Количество входов, используемых Вычислителем
rEPŁ	Повторитель	1
5 U	Взвешенная сумма	1 или 2
rAL	Частное	2
59 r	Квадратный корень	1
Ło₽	Максимум	1 или 2
bott	Минимум	1 или 2
ArIF	Среднее арифметическое	1 или 2
rН	Вычислитель влажности	2
ωFF	Вычислитель отключен	-

Примечание * значение параметра **CAL.t** при программировании кнопками на лицевой панели прибора

 Повторитель просто передает Регулятору значение, измеренное на Входе 1, не производя математических действий.

Установите значение Повторитель, если регулируемая физическая величина измеряется на Входе 1 и не требует никаких дополнительных вычислений. Пример – регулирование температуры, которая измеряется датчиком температуры.

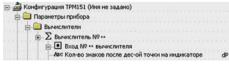
Взвешенная сумма вычисляется по формуле:

$$S = \Pi 1 \times K1 + \Pi 2 \times K2$$

где Д1 и Д2 – з

Д1 и Д2 – значения, измеренные на входах 1 и 2;

К1 и К2 – весовые коэффициенты для входов 1 и 2.


Весовые коэффициенты задаются параметром **SCA** и в других формулах не учитываются.

С помощью Взвешенной суммы вычисляется **разность** двух измеренных величин. Для этого нужно задать одному входу весовой коэффициент «– 1», а другому «+1».

- Частное вычисляет результат деления значения с первого входа на значение со второго входа.
 - Квадратный корень извлекается из значения, измеренного на Входе 1.
- Функции **Минимум** и **Максимум** передают наименьшее и наибольшее из входных значений.
- **Вычислитель влажности** производит расчет влажности психрометрическим методом по температурам сухого и влажного термометров. При этом на Входе 1 измеряется температура сухого термометра, на Входе 2 температура влажного термометра.
- Значение **Вычислитель отключен** пользователь может установить для отключения Канала регулирования. В этом случае TPM151-10 можно использовать как двухканальный измеритель.

3.5.2 Количество знаков после десятичной точки

Вычисленная физическая величина может быть отображена на 4-х разрядном индикаторе ЦИ1 с различной точностью. В параметре **dP** пользователь может задать количество знаков, отображаемых после десятичной точки.

По умолчанию установлено значение **dP**, равное 2.

Если число слишком велико и не помещается на ЦИ, прибор «отрезает» последние цифры, например: при dP = 2 число «485,84» отобразится как «485,8». Просмотр непоместившихся цифр возможен с помощью кнопки (подробнее см. п. 5.1).

3.6 Регулятор

Регулятор – это программный модуль, отвечающий за поддержание измеренной или вычисленной величины на заданном уровне, называемом Уставкой.

Регулятор сравнивает значение, пришедшее с Вычислителя, с Уставкой и вырабатывает выходной сигнал, направленный на уменьшение их рассогласования. Выходной сигнал Регулятора в ТРМ151-10 поступает на Блок управления ИМ «задвижка», который формирует управляющие сигналы для трехпозиционного Исполнительным механизмом типа «нагреватель».

Для Регулятора задаются следующие параметры:

- режим работы (ПИД или двухпозиционный регулятор);
- зона нечувствительности;
- для ПИД-регулятора параметры ПИД-регулирования и автонастройки;
- для двухпозиционного регулятора гистерезис и задержки

3.6.1 ПИД-регулятор

ПИД-регулятор (пропорционально-интегрально-дифференциальный регулятор) выдает значение выходной мощности, направленное на уменьшение отклонения текущего значения регулируемой величины от Уставки.

При управлении ИМ типа «нагреватель-холодильник» значение выходной мощности находится в диапазоне от «-1» до «1» (или от -100 до 100 %).

При этом необходимо задать коэффициент мощности холодильника (параметр **P.CLd**), т.е. коэффициент, отражающий кратность степени влияния каждого ИМ на значение регулируемой величины.

При работе с ВЭ типа ЦАП выходная мощность преобразуется в пропорциональный по величине ток или напряжение.

При работе с ВЭ дискретного типа выходная мощность преобразуется в ШИМ:сигнал, для которого необходимо задать период следования импульсов (параметр **tHP**, см. п. 3.8.1). Принцип формирования ШИМ:сигнала для управления системой «нагреватель – холодильник» показан на рис.5.

Зона нечувствительности задается для исключения ненужных срабатываний Регулятора при небольшом отклонении контролируемой величины от УСТАВКИ. Прибор будет выдавать управляющий сигнал только после того, как регулируемая величина выйдет из этой зоны. Значение зоны нечувствительности задается параметром **db** в единицах регулируемой величины. Это значение делится пополам и откладывается вверх и вниз от УСТАВКИ.

ПИД:регулирование является наиболее точным методом поддержания значения контролируемой величины. Однако для эффективной работы ПИД:регулятора необходимо подобрать для конкретного объекта регулирования ряд коэффициентов.

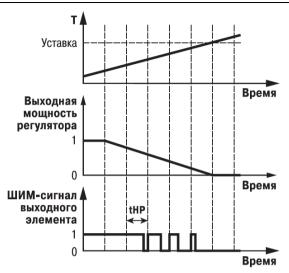


Рисунок 3.5 - Принцип формирования ШИМ-сигнала для «нагревателя»

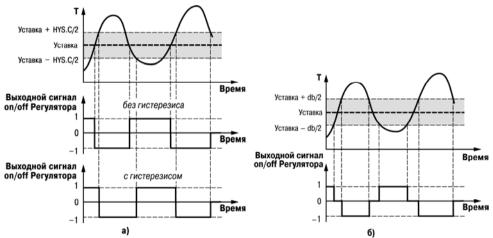


Рисунок 3.6 – Принцип работы 2-х позиционного регулятора в системе «нагреватель - холодильник»: а) с гистерезисом; б) с зоной нечувствительности

Задача настройки ПИД-регулятора довольно сложная, но она может быть выполнена в **автоматическом режиме**. Принцип работы и параметры ПИД-регулятора приведены в Приложении Ж.1.

Об автонастройке ПИД-регулятора см. п. 12.6 и Приложение Ж.2.

3.6.2 Ограничение диапазона и скорости изменения выходной мощности Регулятора (только для ПИД-регулятора)

Значения выходной мощности ПИД-регулятора находятся в диапазоне от «-1» до «1» (или от -100 до 100%). В некоторых случаях возникает необходимость ограничения выходной мощности сверху или снизу.

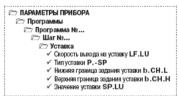
Ограничение диапазона выходной мощности Регулятора задается двумя параметрами: максимальное значение **P.UPr** и минимальное **P.min**. Эти параметры задаются в процентах от максимальной мощности, которую можно подать на систему ИМ. Если Регулятор выдает значение мощности, находящееся за пределами заданного диапазона, то оно принимается равным **P.UPr** или **P.min** соответственно.

Пример - Нельзя допустить, чтобы в климатокамере нагреватель был загружен более чем на 80 %, а холодильник — более чем на 60 % от своей мощности. Для выполнения этого условия нужно установить Минимальную выходную мощность $\mathbf{P.min}$ «—60.0», Максимальную выходную мощность $\mathbf{P.UPr}$ «80.0».

Ограничение скорости роста выходной мощности Регулятора необходимо для безударного включения Исполнительного механизма. Максимальная скорость изменения выходной мощности задается параметром **P.rES** в %/мин.

3.6.3 Двухпозиционный регулятор (ON/OFF)

Двухпозиционный регулятор (ON/OFF) вырабатывает выходную мощность, которая может иметь только два значения: минимальное и максимальное для каждого ИМ. При работе TPM151-10 с системой исполнительных механизмов типа «нагреватель – холодильник» эти значения следующие:


«-1» (-100 %) - «нагреватель» выключен, «холодильник» включен;

«0» (0 %) – «нагреватель» выключен, «холодильник» выключен;

«1» (100 %) – «нагреватель» включен, «холодильник» выключен;

Двухпозиционный регулятор включает «нагреватель» и выключает «холодильник» при значениях регулируемой величины Т, меньших Уставки, а при значениях Т, больших Уставки, выключает «нагреватель» и включает «холодильник» (рисунок 3.6, а). Так работает двухпозиционный регулятор в отсутствие гистерезиса.

Вы можете задать значение величины Гистерезиса двухпозиционного регулятора HYS.C. Тогда состояние «нагреватель» и «холодильник» не будет переключаться, пока отклонение Т от Уставки не достигнет половины величины HYS.C (см. рисунок 3.6, а). Вы также можете задать значение величины зоны нечувствительности двухпозиционного регулятора db.

Тогда «нагреватель» и «холодильник» будут находиться в выключенном состоянии до тех пор, пока отклонение Т от Уставки не достигнет половины величины **db** (см. рисунок 3.6, б)

3.7 Выходные элементы

В ТРМ151-10 имеются два встроенных Выходных элемента (ВЭ), программно привязанных к Регулятору и используемых для управления Исполнительными механизмами. При этом ВЭ1 подключается к «нагревателю», ВЭ2 подключается к «холодильнику». Перечень возможных типов ВЭ представлен в таблица 2.3 (см. раздел 2).

Выходные элементы могут быть двух типов:

- дискретный ВЭ (электромагнитное реле, транзисторная или симисторная оптопара, выход для управления твердотельным реле):

- аналоговый ВЭ (цифроаналоговый преобразователь «параметр – ток 4...20 мА» или «параметр – напряжение 0...10 В»).

3.7.1 Использование дискретного ВЭ при ПИД_регулировании. Параметры ШИМ

Если Вы задали Режим работы регулятора «ПИД-регулятор», то дискретный ВЭ будет работать в режиме ШИМ. В этом случае необходимо задать период следования ШИМ-импульсов (параметр tHP) и минимальную длительность импульса (параметр t.L), при которой еще производится включение ВЭ. Чем выше частота управляющих импульсов (т. е. меньше период tHP), тем точнее реакция Регулятора на внешние изменения. Если ВЭ — транзисторная или симисторная оптопара, то период следования импульсов можно установить равным 1 сек. Если ВЭ — э/м реле, то слишком малое значение периода tHP приведет к частым переключениям и быстрому износу силовых контактов. Поэтому необходимо задать большее значение параметра tHP, но следует иметь в виду, что это может ухудшить качество регулирования. Задание минимально допустимой длительности импульса t.L также необходимо для предотвращения износа силовых контактов ВЭ вследствие слишком кратковременных включений.

3.8 Уставка

Уставка – это значение, которое требуется поддерживать с помощью Регулятора в данный момент времени. Уставка вместе с текущим значением регулируемой величины подается на вход Регулятора.

На каждом Шаге Программы технолога для каждого Регулятора задаются следующие параметры Уставки:

- тип Уставки;
- значение Уставки;
- скорость выхода на Уставку;
- допустимые границы изменения Уставки для работы в режиме Ручного управления (см. п. 12.4).

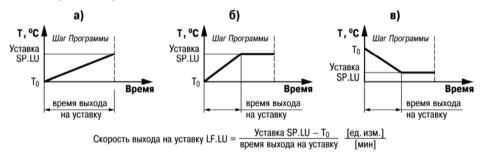


Рисунок 3.7 – Задание скорости выхода на Уставку

3.8.1 Тип Уставки

В ТРМ151-10 в качестве Уставки можно задавать:

- значение регулируемой физической величины (тип «значение»);
- значение выходной мощности Регулятора (тип «мощность»).

Тип Уставки задается параметром P.-SP.

Задание Уставки типа «мощность» бывает необходимо на некоторых стадиях техпроцесса, когда контролировать физический параметр системы не требуется или невозможно. В этом случае пользователь может задать фиксированное значение мощности, которое будет подаваться на Исполнительный механизм. Регулирования при этом происходить не будет.

3.8.2 Значение Уставки

Значение Уставки типа «значение» задается в единицах регулируемой величины и должно находиться в диапазоне измерения Датчика.

Значение Уставки типа «мощность» задается в относительных единицах и может принимать значения от «-1» до «1».

3.9.3 Скорость выхода на Уставку


В ТРМ151-10 можно ограничить скорость выхода на Уставку.

Эта функция используется в тех случаях, когда регулируемая величина должна плавно, с заданной скоростью, возрастать или уменьшаться на данном Шаге Программы:

- в течение всего Шага (см. рисунок 7, a);
- в течение части Шага до достижения Значения уставки, далее осуществляется поддержание достигнутого значения Уставки (см. рисунок 7, б, в).

В начале Шага Уставка принимает значение, равное текущему значению регулируемой величины (T_0) , и сразу начинает изменяться с заданной скоростью.

Величина T_0 - это **Значение уставки** на предыдущем Шаге или начальное значение, если Шаг - первый. Например, если регулируется температура, то при старте Программы T_0 примет значение температуры окружающей среды и начнет расти (или уменьшаться) с заданной скоростью от этого значения.

Параметр **Скорость выхода на уставку LF.LU** задается в единицах регулируемой величины в минуту. Если задать параметру **LF.LU** значение «0», то скорость принимается равной бесконечности, т. е. Уставка мгновенно достигает значения, заданного параметром **SP.LU**.

3.9 Сетевой интерфейс RS-485

Прибор TPM151-10 имеет встроенный сетевой интерфейс RS-485, который предоставляет следующие основные возможности:

- конфигурирование прибора с ПК;
- регистрация на ПК параметров текущего состояния.

Для работы прибора в сети RS-485 необходимо установить его сетевые настройки. В одной сети могут находиться несколько приборов, подключенных к одному компьютеру. Для обеспечения корректной работы в этом случае сетевые параметры всех приборов одной сети должны быть одинаковы.

4 Конструкция прибора

- 4.1 Прибор TPM151-10 изготавливается в пластмассовом корпусе, предназначенном для монтажа на вертикальной плоскости щита управления электрооборудованием (модификация корпуса Щ1) или для настенного монтажа (модификация корпуса Н).
- 4.2 Корпус (Щ1 или H) состоит из двух частей, соединяемых между собой при помощи четырех винтов. Внутри корпуса размещены две печатные платы, на которых располагаются элементы схемы прибора. Соединение плат друг с другом осуществляется при помощи плоских разъемных кабелей.
- 4.3 Крепление прибора на щите обеспечивается двумя фиксаторами, входящими в комплект поставки TPM151-10-Щ1.
- 4.4 Для соединения с первичными преобразователями, источником питания и внешними устройствами прибор оснащен присоединительным клеммником с креплением «под винт». Клеммник у приборов щитового крепления находится на задней стенке. В приборах настенного крепления клеммник расположен под верхней крышкой, при этом в отверстиях подвода внешних связей установлены резиновые уплотнители.
 - 4.5 Габаритные и установочные размеры прибора приведены в Приложении А.

5 Лицевая панель прибора. Индикация и управление

На лицевой панели прибора имеются следующие элементы индикации и управления:

- четыре цифровых светодиодных индикатора (ЦИ1...ЦИ4);
- 10 светодиодов;
- 6 кнопок.

Внешний вид лицевой панели TPM151-10 представлен на рисунке 5.1

Рисунок 5.1 - Лицевая панель прибора

5.1 Индикация в рабочем режиме

Цифровые индикаторы ЦИ1...ЦИЗ в рабочем режиме отображают символьную информацию о Канале регулирования. На ЦИ1 возможно отображение одной из 3-х величин:

- измеренной Входом 1 (светодиод «Вход 1»);
- измеренной Входом 2 (светодиод «Вход 2»);
- вычисленной Вычислителем (светодиод «Вычисленное значение»).

Переключение параметра индицируемого на ЦИ1 производится кнопками высодится кнопками светодиодов, показывая, какой из параметров выводится на ЦИ1.

Назначение цифровых индикаторов представлено в таблице 5.1.

Назначение светодиодов представлено в таблице 5.2.

Таблица 5.1 – Назначение цифровых индикаторов

Цифровой индикатор	Назначение
ЦИ1	Отображает текущее значение измеренной или вычисленной величины
ЦИ2	Отображает текущее значение Уставки для регулирования величины, отображаемой на ЦИ1. При этом светится светодиод «УСТАВКА»
ЦИЗ	Отображает значение выходной мощности, подаваемой на Исполнительный механизм, в процентах
ЦИ4	Отображает через точку номер текущей Программы и номер Шага

Отображение времени, прошедшего от начала текущего Шага

На ЦИ2 можно отобразить время, прошедшее от начала текущего Шага. Для этого пользователь нажимает одновременно кнопки вод ЦИ2 покажет время в единицах измерения, установленных параметром Масштаб времени (см. п. 3.3.4). При этом засветится светодиод «ВРЕМЯ ШАГА». Для возврата к индикации Уставки на ЦИ2 необходимо еще раз нажать кнопки вод нажать нажать кнопки вод нажать нажать кнопки вод нажать кнопки вод нажать нажать кнопки вод нажать кнопки вод нажать наж

Отображение Уставки типа «мощность»

Если пользователь задал тип Уставки «мощность», то на ЦИ2 отображается слово «*Pг.5P*», а значение Уставки отображается на ЦИ3. При этом светится светодиод «**УСТАВКА**».

Если на каком-либо ЦИ поместилась не вся информация (например, не все разряды

5 Лицевая панель прибора. Индикация и управление

числа), необходимо нажать кнопку . Окно отображения сдвинется, и пользователь сможет посмотреть непоместившуюся информацию.

Таблица 5.2 - Назначение светодиодов

Светодиод	Назначение
«АВАРИЯ»	Светится в состоянии критической АВАРИИ (обрыв датчика, перегрев и
	т.п.). Мигает в состоянии некритической АВАРИИ
«НАСТР.ПИД»	Светится при автонастройке ПИД-регулятора
«ВЫЧ.ЗНАЧ.»	Светится при выводе на ЦИ1 вычисленного значения
«ВХОД 1»	Светится при выводе на ЦИ1 значения, измеренного Входом 1
«ВХОД 2»	Светится при выводе на ЦИ1 значения, измеренного Входом 2
«УСТАВКА»	Светится при отображении на ЦИ2 Уставки
«ВРЕМЯ ШАГА»	Светится при отображении на ЦИ2 времени, прошедшего от начала
	текущего Шага
«РУ1»	Показывает, что Канал находится в режиме Ручного управления:
	 мигает при ручном управлении выходной мощностью Регулятора,
	 постоянно светится при ручном управлении Уставкой.
«РУ2»	Не используется
«K1»	Светится, если Выходной элемент 1 ключевого типа (с маркировкой «Р»,
	«К», «С») находится в состоянии «замкнуто». Для ВЭ1 типа ЦАП 420 мА
	(с маркировкой «И») светодиод «К1» не задействован.
«K2»	Аналогично для Выходного элемента 2

5.2 Назначение кнопок в рабочем режиме

Назначение кнопок при Рабочем режиме представлено в таблице 5.3. Назначение кнопок в других режимах описано в соответствующих разделах РЭ.

Таблица 5.3 – Назначение кнопок

Кнопка	Назначение		
удерживать 2 - 3 сек)	Запуск/остановка Программы. Переход из состояния СТОП (STOP) в состояние РАБОТА (RUN) и обратно		
BB0Д + ♠	Выбор параметра на ЦИ1		
BBOD + S	Выбор параметра, индицируемого на ЦИ2		
**	Сдвиг окна отображения для просмотра информации, не поместившейся на цифровых индикаторах; при аварии — отображение на ЦИ2 кода аварии		
BBOD TOTAL	Переход в режим Выбора Программы и Шага (режим SEL)		
Myck CTON	Переход в режим «Быстрого» программирования		
жина н	Переход в режим Программирования		
★	Переход в режим Автонастройки ПИД-регуляторов		
+ BPXX08	Переход в режим Юстировки		
выход	Выход из вспомогательных режимов; отключение аварийной сигнализации; переход из режима АВАРИЯ в СТОП		

Окочание таблицы 5.3

Кнопка	Назначение		
≪ + Bыxxog + ♠	Переход в режим Ручного управления уставкой и обратно		
SANSON + BMXXXX	Переход в режим Ручного управления выходным сигналом регулятора (мощностью) и обратно		
≪ +⊗ (+ ⊗)	Изменение значения параметра (выходного сигнала или уставки) в режиме Ручного управления		
выход туск ввод	Принудительная перезагрузка прибора		
BHX00 TYCK CTON	Переход в состояние ПАУЗА (из состояния РАБОТА) и обратно		

Примечание. Порядок нажатия кнопок важен. Сочетание вазаны означает, что нужно нажать кнопку вазание и. не отпуская ее. нажать кнопку ...

5.3 Состояния прибора и их индикация

Прибор может находиться в одном из описанных ниже состояний:

- В состоянии РАБОТА производится выполнение Программы технолога.
- В состоянии ПАУЗА регулирование продолжается, но «замораживаются» все динамические изменения: прекращается отсчет времени Программы технолога и изменение Уставки. После повторного старта ход Программы возобновляется с прерванного места. Состояние ПАУЗА можно использовать для искусственного продления Программы технолога.
- В состояние КОНЕЦ ПРОГРАММЫ прибор попадает после завершения выполнения Программы технолога.
- В состоянии СТОП ни одна Программа технолога не выполняется. При этом возможно или отключение Выходных устройств, или поддержание фиксированного значения мощности на Исполнительных механизмах, или регулирование по заданной Уставке. Параметры, описывающие состояние СТОП, задаются пользователем (см. п. 3.3.3).
- В состояние АВАРИЯ прибор переходит при возникновении аварийной ситуации. В этом состоянии также возможно поддержание фиксированного значения мощности на ИМ (см. п. 3.3.3).

Подробно о состоянии АВАРИЯ и видах аварий см. п. 12.7.

Схема переключения состояний прибора приведена на рисунке 5.2.

В каждом состоянии, кроме РАБОТА, на ЦИ2 выводится соответствующее сообщение. Список возможных сообщений приведен в таблице 5.4.

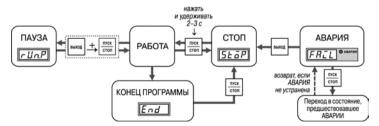


Рисунок 5.2 - Схема переключения состояний прибора

Таблица 5.4 – Индикация состояния прибора

Сообщение на ЦИ2	Состояние прибора	Описание состояния прибора
End («End»)	КОНЕЦ ПРОГРАММЫ	Остановка после выполнения Программы
StoP») م	СТОП	Остановка выполнения Программы
<i>-⊔</i> ∩.Р («rUnP»)	ПАУЗА	Пауза при выполнении Программы
FALL («FAIL»)	АВАРИЯ	Авария при выполнении Программы

5.4 Режимы прибора и общая схема их переключения

На рисунке 5.3 показана общая схема переключения режимов прибора. На схеме приведены также назначения кнопок и их комбинаций в Рабочем режиме. Детальное описание индикации и управления в режимах «Быстрого» программирования, Программирования, Юстировки входов, Автонастройки ПИД-регуляторов и Ручного управления дано в соответствующих разделах РЭ.



Рисунок 5.3 – Схема переключения режимов прибора

6 Меры безопасности

- 6.1 По способу защиты от поражения электрическим током прибор соответствует классу 0 по ГОСТ 12.2.007.0–75.
- 6.2 При эксплуатации, техническом обслуживании и поверке необходимо соблюдать требования ГОСТ 12.3.019—80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».
- 6.3 Открытые контакты клеммника прибора при эксплуатации находятся под напряжением до 250 В, опасном для человеческой жизни. Любые подключения к прибору и работы по его техническому обслуживанию следует производить только при отключенном питании прибора и исполнительных механизмов.
- 6.4 Не допускается попадание влаги на контакты выходного разъема и внутренние электроэлементы прибора. Запрещается использование прибора в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.
- 6.5 Подключение, регулировка и техобслуживание прибора должны производиться только квалифицированными специалистами, изучившими настоящее руководство по эксплуатации.

7 Монтаж и подключение прибора

При монтаже прибора для его крепления следует использовать монтажные элементы, входящие в комплект поставки прибора.

Примечание — Перед монтажом TPM151-10 рекомендуется произвести конфигурирование прибора через персональный компьютер или с передней панели прибора.

7.1 Монтаж прибора в корпусе настенного крепления (TPM151-H)

7.1.1 Подготовка посадочного места в шкафу управления

Следует подготовить посадочное место в шкафу управления для установки прибора в соответствии с размерами, приведенными в Приложении А.

Конструкция шкафа управления должна обеспечивать защиту прибора от попадания в него влаги, грязи и посторонних предметов.

7.1.2 Установка прибора на вертикальную стенку в шкафу управления

Установка прибора на вертикальную стенку в шкафу управления осуществляется в следующей последовательности:

- Кронштейн закрепляется тремя винтами М4 на поверхности, предназначенной для установки прибора (см. Приложение А и рисунок 7.1, а).
 - **Примечание**. Винты для крепления кронштейна не входят в комплект поставки.
- Крепежный уголок зацепляется на задней стенке прибора за верхнюю кромку кронштейна (рисунок 7.1, б).
- 3) Прибор прикрепляется к кронштейну винтом $M4 \times 35$ из комплекта поставки (рисунок 7.1, в).

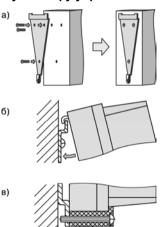


Рисунок 7.1 – Установка прибора настенного крепления

7.2 Монтаж прибора в корпусе щитового крепления (ТРМ151-Щ1)

7.2.1 Подготовка посадочного места на щите управления

Следует подготовить посадочное место на щите управления для установки прибора в соответствии с размерами, приведенными в Приложении А.

Конструкция щита управления должна обеспечивать защиту прибора от попадания в него влаги, грязи и посторонних предметов.

При размещении прибора следует помнить, что при эксплуатации открытые контакты клемм находятся под напряжением, опасным для человеческой жизни. Поэтому доступ внутрь щита управления разрешен только квалифицированным специалистам.

7.2.2 Установка прибора в щит управления

Установка прибора на вертикальную стенку в щит управления осуществляется в следующей последовательности:

- Прибор вставляется в специально подготовленное отверстие на лицевой панели щита (см. Приложение А и рисунок 7.2, a).
- Фиксаторы из комплекта поставки вставляются в отверстия на боковых стенках прибора (рисунок 7.2, б).
- Винты М4 × 35 заворачиваются с усилием в отверстие каждого фиксатора так, чтобы прибор был плотно прижат к лицевой панели щита.

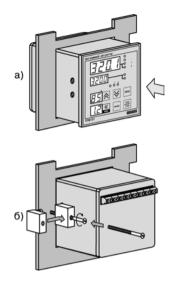


Рисунок 7.2 – Установка прибора щитового крепления

7.3 Монтаж внешних связей

7.3.1 Общие требования

7.3.1.1 Питание прибора рекомендуется производить от источника, не связанного непосредственно с питанием мощного силового оборудования. Во внешней цепи следует установить выключатель питания, обеспечивающий отключение прибора от сети и плавкие предохранители на ток 1,0 A.

Питание каких-либо устройств от сетевых контактов прибора запрещается.

7.3.1.2 Схемы подключения датчиков и исполнительных устройств к приборам различных модификаций приведены в Приложении Б. Параметры линии соединения прибора с датчиком приведены в таблице 7.1.

7.3.2 Указания по монтажу

7.3.2.1 Следует подготовить кабели для соединения прибора с датчиками, исполнительными механизмами и внешними устройствами, источником питания и RS-485. Для обеспечения надежности электрических соединений рекомендуется использовать кабели с медными многопроволочными жилами, концы которых перед подключением следует тщательно зачистить и залудить. Зачистку жил кабелей необходимо выполнять с таким расчетом, чтобы их оголенные концы после подключения к прибору не выступали за пределы клеммника.

Сечение жил кабелей не должно превышать 0,75 кв.мм.

7.3.2.2 При прокладке кабелей следует выделить линии связи, соединяющие прибор с датчиками, в самостоятельную трассу (или несколько трасс), располагая ее (или их) отдельно от силовых кабелей, а также от кабелей, создающих высокочастотные и импульсные помехи.

Для защиты входных устройств ТРМ151-10 от влияния промышленных электромагнитных помех линии связи прибора с датчиками следует экранировать. В качестве экранов могут быть

использованы как специальные кабели с экранирующими оплетками, так и заземленные стальные трубы подходящего диаметра.

Внимание! Рабочие спаи термопар должны быть электрически изолированы друг от друга и от внешнего оборудования!

Таблица 7.1 – Параметры линии связи прибора с датчиками

Тип датчика	Длина линии, м, не более	Сопротивление линии, Ом, не более	Исполнение линии
Термопреобразователь сопротивления	100	15,0	Трехпроводная, провода равной длины и сечения
Термопара	20	100	Термоэлектродный кабель (компенсационный)
Унифицированный сигнал постоянного тока	100	100	Двухпроводная
Унифицированный сигнал постоянного напряжения	100	5,0	Двухпроводная

7.4 Подключение прибора

7.4.1 Общие указания

Подключение прибора следует выполнять по соответствующим схемам, приведенным в Приложении Б, соблюдая при этом изложенную ниже последовательность действий.

- 1) Подключение прибора к исполнительным механизмам и внешним устройствам, а также к отключенному источнику питания.
- 2) Подключение линии связи «прибор датчики» к первичным преобразователям.
- 3) Подключение линии связи «прибор датчики» к входам ТРМ151-10.
- Подключение линии интерфейса RS-485 (подключение линий интерфейса RS-485 необходимо производить только в том случае, если пользователь планирует конфигурирование прибора с ПК или регистрацию данных на ПК).

Внимание!

- 1) Клеммные соединители прибора, предназначенные для подключения сети питания и внешнего силового оборудования, рассчитаны на максимальное напряжение 250 В. Во избежание электрического пробоя или перекрытия изоляции подключение к контактам прибора источников напряжения выше указанного запрещается.
- 2) Для защиты входных цепей TPM151-10 от возможного пробоя зарядами статического электричества, накопленного на линиях связи «прибор датчики», перед подключением к клеммнику прибора их жилы следует на 1...2 с соединить с винтом заземления щита.

7.4.2 Подключение внешних устройств управления

Цепи дискретных Выходных элементов имеют гальваническую изоляцию от схемы прибора. Исключение составляет выход «Т» для управления внешним твердотельным реле. В этом случае гальваническую изоляцию обеспечивает само твердотельное реле.

7.4.2.1 Подключение нагрузки к ВЭ типа «транзисторная оптопара» («К»)

Транзисторная оптопара применяется, как правило, для управления низковольтным электромагнитным или твердотельным реле (до 50 В пост. тока).

На рисунке 7.3 приведена схема подключения для ВЭ1. Во избежание выхода из строя транзистора из-за большого тока самоиндукции, параллельно обмотке реле необходимо установить диод VD1, рассчитанный на ток 1 А и напряжение 100 В.

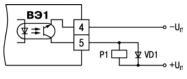
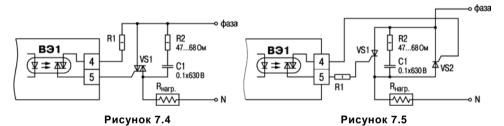
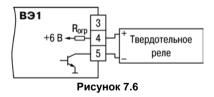



Рисунок 7.3

7.4.2.2 Подключение нагрузки к ВЭ типа «симисторная оптопара» («С»)

Оптосимистор включается в цепь управления мощного симистора через ограничивающий резистор R1 (для BЭ1 см. рисунок 7.4). Значение сопротивления резистора определяется величиной тока управления симистора, R1=30/ $I_{\rm OTKD}$.

Оптосимистор может также управлять парой встречно-параллельно включенных тиристоров VS1 и VS2 (для ВЭ1 см. рисунок 7.5). Для предотвращения пробоя тиристоров из-за высоковольтных скачков напряжения в сети к их выводам рекомендуется подключать фильтрующую RC цепочку (R2C1).


7.4.2.3 Подключение к ВЭ типа «электромагнитное реле» («Р»)

На клеммы прибора выведены сухие контакты электромагнитного реле, к которому подключают коммутируемую нагрузку.

7.4.2.4 Подключение к ВЭ для управления твердотельным реле («Т»)

Выходной элемент «Т» выдает напряжение от 4 до 6 В для управления внешним твердотельным реле. Схема подключения представлена на рисунке 7.6.

Данный тип выходного элемента не оснащен внутренней гальванической изоляцией. Гальваническую развязку прибора и подключенного исполнительного механизма обеспечивает само твердотельное реле. Внутри выходного элемента установлен ограничительный резистор R_{огр} номиналом 100 Ом.

7.4.2.5. Подключение нагрузки к ВЭ типа «ЦАП 4...20 мА» («И»)

Для работы ЦАП 4...20 мА используйте внешний источник питания постоянного тока (для ВЭ1 см. рис. 18), номинальное значение напряжения которого $U_{\rm n}$ рассчитывается следующим образом:

$$U_{n.min} < U_n < U_{n.max};$$

 $U_{n.min} = 10 B + 0.02 A \cdot R_H;$
 $U_{n.max} = U_{n.min} + 2.5 B,$

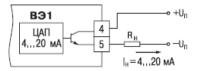


Рисунок 7.7

где

 ${\sf U}_{\sf \Pi}$ $_{\sf -}$ номинальное напряжение источника питания, B;

 $U_{n.min}_{\ \ -\ }$ минимально допустимое напряжение источника питания, B;

 $U_{\text{п.max}}\ _{-\text{ максимально допустимое напряжение источника питания, B;}$

R_н – сопротивление нагрузки ЦАП, Ом.

Если по какой-либо причине напряжение источника питания ЦАП, находящегося в Вашем распоряжении, превышает расчетное значение $U_{\Pi,max}$, то последовательно с нагрузкой необходимо включить ограничительный резистор (см. рис. 21), сопротивление которого

R_{огр} рассчитывается по формулам:

$$R_{orp.min} < R_{orp.max}; \quad R_{orp.min} = \frac{U_n - U_{n.max}}{I_{LLA\Pi.max}} \cdot 10^3 \quad R_{orp.max} = \frac{U_n - U_{n.min}}{I_{LLA\Pi.max}} \cdot 10^3$$

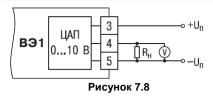
$$R_{orp.min} = \frac{U_n - U_{n.max}}{I_{LLA\Pi.max}} \cdot 10^3 \quad R_{orp.max} = \frac{U_n - U_{n.min}}{I_{LLA\Pi.max}} \cdot 10^3$$

Рисунок 7.7

где

 ${\sf R}_{\sf огр. hom}$ - номинальное значение ограничительного резистора, кОм;

 $\mathsf{R}_{\mathsf{orp.min}}\,$ - минимально допустимое значение ограничительного резистора, кОм


R_{огр.max} - максимально допустимое значение ограничительного резистора, кОм

I_{ЦАП.max} _{- максимальный выходной ток ЦАП, мА;}

ВНИМАНИЕ! Напряжение источника питания ЦАП не должно превышать 36 В.

7.4.2.6. Подключение нагрузки кВЭ типа «ЦАП 0... 10 В» («У»)

Для работы ЦАП 0...10 В используйте внешний источник питания постоянного тока (для ВЭ1 см. рис. 20), номинальное значение напряжения которого $U_{\text{п}}$ находится в диапазоне 15...32 В. Сопротивление нагрузки $R_{\text{н}}$, подключаемой к ЦАП, должно быть не менее 2 кОм.

ВНИМАНИЕ! Напряжение источника питания ЦАП не должно превышать 36 В.

7.4.3 Подключение датчиков

Схема подключения датчиков к прибору ТРМ151-10 приведена на рисунке Б.1.

7.4.3.1 Подключение термопреобразователей сопротивления

В ТРМ151-10 используется трехпроводная схема подключения термопреобразователей сопротивления. При такой схеме к одному из выводов ТС подключаются одновременно два провода, соединяющих его с прибором, а к другому выводу – третий соединительный провод (см. рисунок Б.1).

Внимание! Сопротивления всех трех соединительных проводов должны быть равны. Для этого используются одинаковые провода равной длины. В противном случае результаты измерений могут быть неточными.

Примечание — Пользователь может подключить ТС также по двухпроводной схеме (например, с целью использования уже имеющихся на объекте линий связи). Однако при этом отсутствует компенсация сопротивления соединительных проводов и поэтому может наблюдаться некоторая зависимость показаний прибора от колебаний температуры проводов. При использовании двухпроводной схемы при подготовке прибора к работе должны быть выполнены действия, указанные в Приложении Д.

7.4.3.2 Подключение термоэлектрических преобразователей (термопар)

- Подключение термопар к прибору производятся с помощью специальных компенсационных (термоэлектродных) проводов, изготовленных из тех же самых материалов, что и термопара. Допускается также использовать провода из металлов с термоэлектрическими характеристиками, которые в диапазоне температур 0...100 °C аналогичны характеристикам материалов электродов термопары.
- При соединении компенсационных проводов с термопарой и прибором необходимо соблюдать полярность (см. схему подключения, рисунок Б.1).
 При нарушении вышеуказанных усл овий могут возникать значительные погрешности при измерении!
- Во избежание влияния помех на измерительную часть прибора линию связи прибора с датчиком рекомендуется экранировать. В качестве экрана может быть использована заземленная стальная труба.

TPM151

типа "параметр-ток",
"параметр-напряжение"
и датчиков положения
токового типа

Внимание! Рабочие спаи термопар должны быть электрически изолированы друг от друга и от внешнего оборудования! Запрещается использовать термопары с неизолированным рабочим спаем.

7.4.3.3 Подключение активных датчиков, имеющих унифицированный выходной сигнал тока или напряжения

- 1) Активные датчики с выходным сигналом в виде постоянного напряжения (-50 ... 50 мВ или 0...1 В) подключаются непосредственно к входным контактам прибора.
- 2) Активные датчики с выходным сигналом в виде тока (0...5 мА, 0...20 мА или 4...20 мА), в том числе датчики положения токового типа, можно подключать к прибору только после установки внешнего шунтирующего резистора (см. рисунок Б.1 и рисунок 7.7). Резистор должен быть прецизионным (типа C2-29B, C5-25 и т.п., мощностью не менее 0,25 Вт, сопротивлением 100 Ом ± 0,1 %) и высокостабильным во времени и по температуре (ТКС не хуже 25х10⁻⁶ 1/°C).
- 3) Для питания нормирующих преобразователей необходим дополнительный источник постоянного напряжения U_п. На рисунке 7.7 показана схема подключения датчиков с унифицированным выходным сигналом 4...20 мА к приборам по двухпроводной линии. Значение напряжения U_п указывается в технических характеристиках нормирующего преобразователя и, как правило, лежит в диапазоне 18...36 В.
- Во избежание влияния помех на измерительную часть прибора линию связи прибора с датчиком рекомендуется экранировать. В качестве экрана может быть использована заземленная стальная труба.

Внимание! «Минусовые» входы датчиков в приборе электрически объединены между собой.

7.4.4 Подключение к персональному компьютеру по интерфейсу RS-485

- 7.4.4.1 Подключение прибора к ПК по интерфейсу RS-485 необходимо производить только в том случае, если пользователь планирует конфигурирование прибора с персонального компьютера или регистрацию данных на ПК.
- 7.4.4.2 Подключение TPM151-10 к ПК по RS-485 производится через адаптер OBEH AC3 (или другой адаптер интерфейса RS-232/RS-485).
- 7.4.4.3 Связь прибора по интерфейсу RS-485 выполняется по двухпроводной схеме. Длина линии связи должна быть не более 800 метров. Подключение осуществляется витой парой проводов, соблюдая полярность (см. рисунок Б.1). Провод А подключается к выводу А прибора. Аналогично, выводы В соединяются между собой.

Внимание! Подключение производится при отключенном питании обоих устройств.

8 Программирование прибора

8.1 Общие принципы программирования ТРМ151-10

8.1.1 Перед эксплуатацией TPM151-10 необходимо задать полный набор значений программируемых параметров, определяющих работу прибора. Этот набор параметров называется Конфигурацией.

При производстве прибора TPM151-10 в него записываются заводские значения программируемых параметров. Пользователь может изменить значения необходимых параметров. Допускается изменять значения не всех параметров, а только требуемых.

Конфигурация записывается в энергонезависимую память и сохраняется в ней при отключении питания.

- 8.1.2 Программирование ТРМ151-10 можно производить двумя способами:
- кнопками на лицевой панели прибора;
- на персональном компьютере с помощью программы «Конфигуратор ТРМ151» или программы «Быстрый старт ТРМ151-10».

Примечание — Рекомендуется производить программирование прибора на ПК, так как удобный пользовательский интерфейс программ конфигурирования уменьшает вероятность задания ошибочных значений параметров.

- 8.1.3 Перед программированием TPM151-10 с помощью кнопок на его лицевой панели необходимо включить питание прибора. Никаких других предварительных операций проводить не требуется. Принципы программирования TPM151-10 с помощью кнопок на лицевой панели прибора описаны в разделе 11.
- 8.1.4 Для программирования с помощью программ «Конфигуратор TPM151» или «Быстрый старт TPM151-10» необходимо подключить прибор TPM151-10 к компьютеру по интерфейсу RS-485 через адаптер OBEH AC3 или другой адаптер RS-485/RS-232 (см. п. 10.3).

Работа с программой «Конфигуратор ТРМ151» описана в разделе 10, о «Быстром старте ТРМ151-10» см. п. 10.9.

8.1.5 Полный список программируемых параметров представлен в Приложении В.

8.2 Последовательность задания программируемых параметров TPM151-10

8.2.1 Задание Конфигурации прибора

- 1. Задайте тип датчика **in t** для каждого используемого Входа.
- 2. Для каждого активного датчика задайте верхнюю и нижнюю границы диапазона измерения **Ain.H** и **Ain.L**.
- 3. При использовании термопар включите режим автоматической коррекции по температуре свободных концов термопар параметром **Ci**.**C**.
- 4. При необходимости задайте для каждого Входа период опроса датчика, параметры цифровых фильтров и коррекции показаний дат чи ка.
- 5. Задайте формулу для вычислителя параметром **CAL.t**, количество аргументов вычислителя (параметр **n.in.C**), значения параметров фильтров (параметры **CL.FG** и **CL.Fd**) и количество знаков после десятичной точки на индикаторе (параметр **dP**).
- 6. При необходимости расчета влажности задайте значение психрометрического коэффициента параметром **A.ist**.
- 7. При вычислении по формуле «взвешенная сумма» задайте весовые коэффициенты параметрами **SCA1** и **SCA2**.
- 8. Задайте режим работы регулятора в параметре **rEG.t** и зону нечувствительности параметром **db**.

- 9. Задайте параметры автонастройки или, если Вы планируете настраивать регулятор вручную, параметры ПИД:регулирования.
- 10. При использовании двухпозиционного регулятора задайте гистерезис (**HYS.C**) и параметры времени задержки.
 - 11. При необходимости задайте ограничения для выходной мощности Регуляторов.
 - 12. Задайте коэффициент мощности холодильника P.CLD.
- 13. Для дискретного ВЭ задайте период следования импульсов **tHP** и минимальную длительность импульса **t.L**.

8.2.2 Задание Программы технолога

В памяти ТРМ151-10 можно задать и сохранить до 12 Программ технолога.

Перед заданием параметров Программы рекомендуется нарисовать график изменения Уставок регулируемых величин во времени и разбить его на отдельные Шаги (см. пример на рисунке 3.2).

Для всех Программ прибора:

Задается масштаб времени для параметров, описывающих длительность, параметром **t.SCL**.

Для всей Программы:

Разрешается запуск программы в параметре **rnPr**.

Для каждого Шага Программы:

Задается тип Шага St.tY.

Для последнего Шага Программы задается тип «конец программы».

Для каждого Шага Программы, кроме Шага типа «конец программы»:

- 1. Задаются условия перехода на следующий Шаг.
- 2. Задаются для каждого шага тип Уставки «значение», если на данном Шаге планируется регулирование измеряемой величины, или «мощность», если регулирования не будет, параметром **P.-SP.**
- 3. Задается для каждого шага значение Уставки **SP.LU.**
- 4. При необходимости плавного выхода на Уставку задается скорость выхода на Уставку в параметре **LF.LU.**
- 5. Если планируется управлять Уставкой вручную в процессе выполнения Программы, задаются границы изменения Уставки параметрами **b.CH.L** и **b.CH.H.**

Для Шага типа «шаг с переходом»:

Задаются номер Программы **nU.Pr** и номер Шага **nU.St**, на который будет осуществляться переход.

8.2.3 Задание вспомогательных параметров прибора

- Задается режим, в который перейдет прибор после восстановления питания, bEHv.
- При необходимости задается режим, в который перейдет прибор в состоянии СТОП (параметры Шага № 10 Программы № 12).
- 3) При необходимости задается режим, в который перейдет прибор в состоянии АВАРИЯ (параметры Шага № 9 Программы № 12).

9 Настройка сетевого интерфейса RS-485

9.1 Сетевые параметры и их заводские установки

Режим работы сети RS-485 определяют 5 параметров, представленных в таблице 9.1. Кроме того, каждый прибор в сети RS-485 имеет свой уникальный Базовый сетевой адрес (см. п. 9.2).

При конфигурировании прибора на заводе-изготовителе для прибора и Конфигуратора устанавливаются одинаковые значения параметров, определяющих работу в сети RS-485 (см. таблицу 9.1).

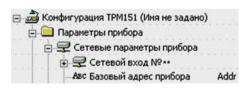
Таблица 9.1 – Заводские значения сетевых параметров TPM151 и программы «Конфигуратор TPM151»

Имя параметра	Название параметра	Значение
bPS	Скорость обмена данными	9600 бит/с
Len	Длина слова данных 8 бит	
PrtY	Контроль четности	отсутствует
Sbit	Количество стоп-бит в посылке 1	
A.Len	Длина сетевого адреса 8 бит	
rs.dL	Время задержки ответа по сети 1 мс	

Изменение сетевых настроек прибора или программы может потребоваться при одновременной работе с несколькими приборами в сети.

При неустойчивой связи с прибором, на что указывают частые сообщения об ошибках при чтении или записи параметров, может возникнуть необходимость изменить **Скорость обмена данными**. Например, при работе на медленном ПК, если скорость составляла 9600 бит/с, следует установить 38400 или 57600 бит/с.

Возможные значения сетевых параметров приведены в Приложении В.


Внимание!

- 1) Для обеспечения совместной работы сетевые параметры всех приборов одной сети и программы «Конфигуратор ТРМ151» должны быть одинаковы. В противном случае невозможно установить связь между приборами.
- 2) Базовые адреса всех приборов одной сети должны быть различны и заданы с интервалом, кратным 8 (см. п. 9.2).

9.2 Базовый адрес прибора

Каждый прибор в сети RS-485 должен иметь свой уникальный **Базовый адрес** в сети.

Длина **Базового адреса** прибора определяется параметром **A.Len** при конфигурировании сетевых настроек и может быть либо 8, либо 11 бит. Соответственно,

максимальное значение, которое может принимать **Базовый адрес** при 8-битной адресации – 255, а при 11-битной адресации – 2047.

На заводе-изготовителе всем приборам устанавливается одинаковый **Базовый адрес Addr**, равный 16. Если планируется использовать в одной сети RS-485 несколько приборов, то им необходимо задать новые значения **Базовых адресов**.

Для каждого следующего прибора ТРМ151 в сети Базовый адрес задается по формуле:

Базовый адрес прибора ТРМ151 = Базовый адрес предыдущего прибора + 8.

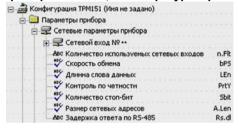
Пример. Для прибора № 1 Базовый адрес равен 16. Тогда для прибора № 2 задается

Базовый адрес 24, для прибора № 3 – 32 и т. д.

Таким образом, под каждый прибор TPM151 резервируется 8 адресов в адресном пространстве сети. Эти адреса могут понадобиться при передаче параметров текущего состояния по сети RS-485.

Внимание! Запрещается задавать другим приборам в сети **Базовые адреса**, лежащие в диапазоне: **[Базовый адрес ТРМ151 + 7]**.

9.3 Изменение сетевых параметров прибора


Настройка сетевых параметров прибора может осуществляться двумя способами:

- с помощью программы «Конфигуратор ТРМ151»;
- кнопками на лицевой панели прибора.

9.3.1 Изменение сетевых параметров прибора с помощью Конфигуратора

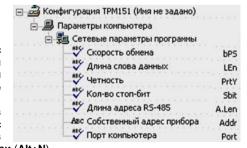
Задание сетевых параметров прибора с помощью Конфигуратора возможно, только если связь прибора с компьютером успешно установлена при текущих сетевых настройках.

Внимание! Прибор продолжает работать с прежними сетевыми настройками до тех пор, пока измененные значения параметров не будут записаны в прибор (см. п. 10.7.8). Измененные сетевые параметры помечаются зеленым шрифтом, а после их записи в прибор шрифт становится черным.

После записи в прибор измененных **Сетевых параметров прибора** Конфигуратор автоматически предлагает изменить **Сетевые параметры программы** (см. п. 9.4).

9.3.2 Изменение сетевых параметров прибора кнопками на лицевой панели

В случае, если связь прибора с компьютером установить не удается, задание сетевых параметров прибора возможно только кнопками на лицевой панели прибора.


Схема последовательности действий приведена на рисунке 9.1. Подробно о программировании ТРМ151-10 с помощью кнопок на лицевой панели прибора см. раздел 11.

После изменения сетевых параметров прибора задаются аналогичные настройки для сетевых параметров программы (см. п. 9.4) и проверяется наличие связи с прибором.

9.4 Изменение сетевых параметров программы

Сетевые параметры программы задаются с помощью Конфигуратора. Доступ к ним возможен через папку Сетевые параметры программы или через меню Режимы программы Сетевые параметры программы.

После задания сетевых параметров программы проверяется наличие связи с прибором, считыванием его имени. Для этого в меню Прибор выбирается команда Проверка связи (Alt+N).

`

Если произошла ошибка считывания, проверяется правильность установки сетевых параметров программы, соответствие их сетевым настройкам прибора, правильность подключения прибора к компьютеру через адаптер ОВЕН AC3.

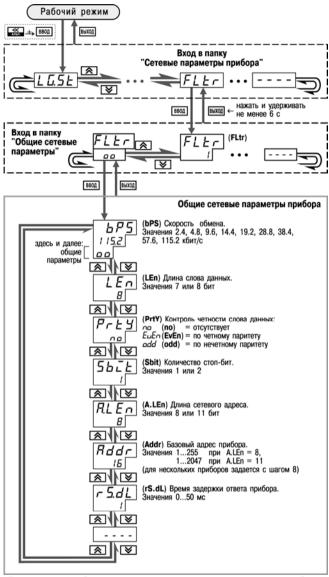


Рисунок 9.1 – Схема задания сетевых параметров прибора кнопками на лицевой панели прибора

10 Программа «Конфигуратор ТРМ151»

10.1 Назначение

- 10.1.1 Программа «Конфигуратор ТРМ151» (или Конфигуратор) предназначена для задания конфигурации прибора при помощи персонального компьютера. Конфигуратор позволяет считывать конфигурации из прибора, редактировать их и записывать конфигурации в прибор. Также Конфигуратор имеет возможность работать с файлами конфигураций, которые можно сохранять на диске или загружать их с диска.
- 10.1.2 Пользователь может работать с Конфигуратором без подключенного прибора. Например, пользователь может загрузить в Конфигуратор «пустую» конфигурацию ТРМ151-10, отредактировать ее и сохранить в файл. Впоследствии пользователь может подключить прибор к компьютеру, установить между ними связь и записать Конфигурацию в прибор.
- 10.1.3 Так как у Пользователя имеется прибор, сконфигурированный под модификацию ТРМ151-10, то для упрощения работы перед запуском Конфигуратора рекомендуется подключить прибор к компьютеру. Тогда **Мастер конфигураций ТРМ151** позволит автоматически установить между ними связь и считать параметры из прибора.

10.2 Установка Конфигуратора

Для установки программы «Конфигуратор TPM151» запускается инсталляционный файл **SetupTRM151.exe** с диска, входящего в комплект поставки, и, следуя инструкциям, устанавливается Конфигуратор на локальный диск компьютера.

10.3 Запуск конфигуратора с помощью Мастера конфигураций TPM151. Установка связи с прибором

Предварительные операции

- Подключается прибор TPM151-10 к компьютеру по интерфейсу RS-485 через адаптер ОВЕН AC3 или другой адаптер RS-485/RS-232 (см. п. 7.4.4).
- Подается питание на прибор и на адаптер.

Важно! Перед запуском Конфигуратора проверяется, чтобы подключенный прибор не находился в режиме Программирование. Для выхода из режима Программирование необходимо нажать кнопку удерживая ее 2- 3 с, и еще раз кратковременно нажать кнопку

1) Запускается Конфигуратор (файл TRM151.exe).

Автоматически запустится Мастер конфигураций ТРМ151, и на экране появится окно «Связь с прибором» (рисунок 10.1).

Программа предлагает проверить или изменить сетевые параметры прибора.

 Проверяется наличие связи с прибором нажатием кнопки «Проверка».

Если связь прибора с компьютером установлена, появится сообщение с информацией об имени подключенного прибора и версии его прошивки.

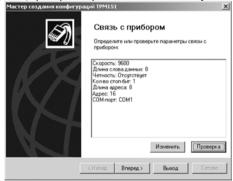


Рисунок 10.1

В этом случае следует закрыть окно сообщения, нажав кнопку «ОК», и перейти к п. 3.

В случае появления сообщения о том, что связь не установлена, следует закрыть окно сообщения, нажав «ОК», выяснить причину отсутствия связи и попробовать ее устранить, используя рекомендации таблицы 10.1 (см. п. 10.4).

После проведенных мероприятий необходимо еще раз проверить наличие связи с прибором, нажав кнопку «Проверка».

Примечание. Все приборы TPM151 поставляются пользователю с одинаковыми сетевыми настройками (см. п. 9.1). Программа «Конфигуратор TPM151» имеет «по умолчанию» те же сетевые настройки. Поэтому при первом подключении прибора TPM151 к компьютеру связь должна устанавливаться автоматически.

Если связь по неизвестным причинам установить не удается, необходимо обратится к специалистам в группу технической поддержки по адресу <u>trm151@owen.ru</u>.

После того, как связь прибора с компьютером установлена:

3) Нажимается кнопка [Вперед>].

Программа попытается считать модификацию из прибора.

Если модификация успешно считана, на экране появится окно с приглашением выбрать уровень доступа (см. рисунок 10.3).

Если модификацию считать не удается, появится соответствующее сообщение. После нажатия «ОК» открывается окно с приглашением выбрать модификацию прибора из списка (рисунок 10.2).

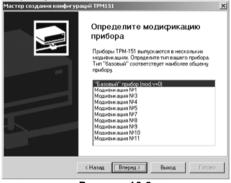


Рисунок 10.2

Выбирается модификация прибора («Модификация № 3»). Нажимается кнопка [Вперед>] — открывается окно с приглашением выбрать уровень доступа (рисунок 10.3). Осуществляется переходите к п. 4.

- 4) Выбор уровня доступа:
 - «минимальный» для задания только параметров Программ технолога.
 - «средний» для задания параметров Конфигурации ТРМ151-10 и Программ технолога (рекомендуется);
 - «полный» для свободного переконфигурирования прибора (только для квалифицированных пользователей).

Для «среднего» или «полного» уровня доступа вводится пароль (см. п. 10.5, таблица 10.2).

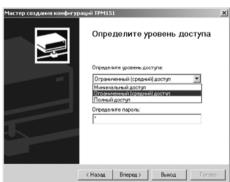


Рисунок 10.3

5) Нажимается кнопка [Вперед>].

Открывается окно, завершающее подготовку созданию Конфигурации (рисунок 10.4). Если прибор подключен, устанавливаются «Включить флаги режим автоматического чтения» и/или «Режим автоматической записи» (см. п. 10.7.5, 10.7.8).

6) Нажимается кнопка [Готово].

Программа открывает лист «Дерево параметров» рабочего окна Конфигуратора, в котором создана новая Конфигурация (см. п. 10.6).

Для того чтобы прервать работу Конфигуратора, нажмите кнопку [Выход] в любом окне Мастера.

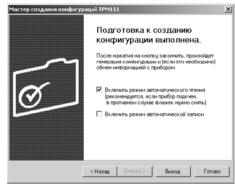


Рисунок 10.4

10.4 Причины отсутствия связи прибора с компьютером и способы их устранения

Возможные причины отсутствия связи прибора с компьютером и способы их устранения перечислены в таблице 10.1.

Таблица 10.1

таолица 10.1		
Причина отсутствия связи	Способы устранения неисправности	
Неправильно указан СОМ-порт, к которому подключен адаптер сетевого интерфейса.	Путь для задания СОМ-порта в окне Конфигуратора: в Мастере создания конфигурация ТРМ151 (Имя не задано) конфигураций нажимается кнопка [Изменить]. В открывшемся окне для параметра Порт компьютера нужный СОМ-порт.	
Неправильно подключен прибор или адаптер	Проверяется правильность подключения: – AC3 должен быть подключен к соответствующему COM-порту ПК; – сетевые выходы «А» и «В» адаптера AC3 должны быть подключены к аналогичным выходам прибора; – на прибор и адаптер должно быть подано питание (контролируется по свечению индикаторов или светодиодов).	
Сетевые настройки прибора и программы не совпадают	Изменются настройки программы или прибора так, чтобы они совпадали (см. раздел 9). Сетевые настройки прибора проверяются и меняются с помощью кнопок на лицевой панели прибора по п. 9.3.2. Изменение сетевых настроек программы в Мастере создания конфигураций: нажимается кнопка [Изменить]. В открывшемся окне задаются новые значения параметров в окне Конфигуратора - см. п. 9.4.	
Прибор работает в режиме Мастера сети RS-485	Прибор переводится в режим подчиненного для того, чтобы он воспринимал команды от ПК. (См. полное руководство по эксплуатации TPM 151*)	

^{* -} высылается по запросу на trm151@owen.ru.

Примечание — Если Пользователь находится в главном окне Конфигуратора, после проведенных мероприятий проверяется наличие связи с прибором считыванием его имени. Для

этого в меню Прибор выбирается команда Проверка связи (или нажимаются клавиши Alt+N).

10.5 Уровни доступа

При запуске программа «Конфигуратор TPM151» предлагает выбрать уровень доступа. Всего в программе имеется 3 уровня доступа, 2 из которых защищены паролями. Информация об уровнях доступа представлена в таблице 10.2.

При желании пользователь может изменить пароли доступа с помощью команды меню **Сервис → Смена паролей**.

При запуске на минимальном уровне доступа программа автоматически попытается считать часть конфигурации из прибора для построения таблиц Программ технолога (см. п. 10.6.2). При этом прибор должен быть подключен к компьютеру и запитан. Если программе не удается установить связь с прибором и первые 5 параметров считываются неудачно, происходит прекращение автоматического считывания. После установки связи прибора с программой необходимо восстановить режим автоматического чтения, установив флаг в пункте меню Режимы программы → Режим автоматического чтения.

Таблица 10.2

Уровень доступа	Пароль	Предоставляемые возможности	Для кого рекомендуется
Минимальный	нет	Доступ только к параметрам Программ технолога и Уставкам	Оператор
Средний	не задан («пустой»)	Доступ ко всем параметрам, определяющим настройки прибора TPM151-10	Технолог, обслуживающий персонал
Полный	«1»	Ограничений нет. Доступ ко всем параметрам прибора ТРМ151, имеется возможность изменить конфигурацию прибора, разрешена инициализация прибора	Наладчик системы, системный интегратор

Внимание! Изменение конфигурации на полном уровне доступа рекомендуется производить только после изучения полного «Руководства по эксплуатации» прибора ТРМ151, имеющегося на диске.

10.6 Интерфейс пользователя

После запуска программы «Конфигуратор ТРМ151» открывается рабочее окно программы (рисунок 10.5), в верхней части которого находятся главное меню, панель инструментов и вкладки листов.

Рабочее окно Конфигуратора содержит два листа:

- «Дерево параметров»;
- «Таблица программ».

Эти листы по-разному отображают информацию о программируемых параметрах прибора. При этом значения параметров на обоих листах одинаковы.

При запуске программы открывается лист «Дерево параметров».

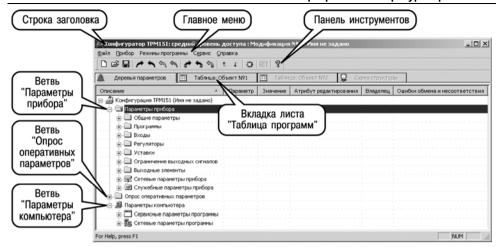


Рисунок 10.5 — Рабочее окно программы «Конфигуратор ТРМ151». Лист «Дерево параметров» (уровень доступа — «средний»)

10.6.1 Лист «Дерево параметров»

Внешний вид листа «Дерево параметров» рабочего окна Конфигуратора представлен на рисунке 10.5. Дерево параметров содержит корневой каталог **Конфигурация** Т**РМ151**, который включает в себя три ветви:

- ПАРАМЕТРЫ ПРИБОРА;
- ОПРОС ОПЕРАТИВНЫХ ПАРАМЕТРОВ:
- ПАРАМЕТРЫ КОМПЬЮТЕРА.

Ветвь ПАРАМЕТРЫ ПРИБОРА содержит полный набор параметров для определения конфигурации прибора и описания Программ технолога. Параметры прибора сгруппированы в папки, внутри которых идет дробление по логическим единицам (Программам, Шагам, устройствам).

Список параметров данной ветви, который появляется на экране, зависит от уровня доступа (см. п. 10.5).

На уровне доступа «минимальный» появляются только параметры следующих папок:

- Общие параметры
- Программы технолога
- Уставки

На уровне доступа «средний» появляются параметры папок, показанных на рисунке 10.5. Эти параметры подробно описаны в разделе 3.

На уровне доступа «полный» появляются все параметры прибора TPM151.

Ветвь ОПРОС ОПЕРАТИВНЫХ ПАРАМЕТРОВ позволяет просматривать и сохранять параметры текущего состояния прибора (оперативные параметры): измеряемые величины, значения выходной мощности Регуляторов, номер активной Программы/Шага, а также состояние прибора (РАБОТА, СТОП и т. д.).

Подробно о регистрации оперативных параметров см. п. 10.8.

Ветвь ПАРАМЕТРЫ КОМПЬЮТЕРА содержит 2 папки:

- **Сервисные параметры программы** информационного характера (версия программы «Конфигуратор ТРМ151» и версия операционной системы):
- **Сетевые параметры программы** для настройки сетевого интерфейса RS-485 (см. п. 9.4).

В каждой строке дерева представлена информация об одном параметре, а в столбцах приведены характеристики этого параметра. Характеристики параметров папок **ПАРАМЕТРЫ ПРИБОРА** и **ПАРАМЕТРЫ КОМПЬЮТЕРА** представлены в таблице 10.3.

Таблица 10.3 – Характеристики параметров

Характеристика	Описание	
Название параметра	-	
Имя параметра	Содержит до 4-х латинских букв, которые могут быть разделены одной или несколькими точками. Используется при программировании прибора кнопками на лицевой панели	
Значение параметра	Может быть представлено в числовом или текстовом формате. Задается вручную (для большинства числовых значений) или выбирается из списка (для текстовых и некоторых числовых значений)	
Атрибут Редактирование	Может принимать значения «Редактируемый» или «Нередактируемый». Значение «Нередактируемый» блокирует попытку изменить значение параметра	
Атрибут Владелец	Может принимать значения «Пользователь» или «Завод». Значение «Завод» установлено на заводе-изготовителе и запрещает изменение атрибута Редактирование , т. е. один атрибут защищает другой.	
Ошибка ввода-вывода	Указывает причину ошибки в случае возникновения таковой, при этом параметр отмечается красным шрифтом	

10.6.2 Лист «Таблица программ»

Внешний вид листа «Таблица программ» главного окна Конфигуратора представлен на рисунке 10.6.

В каждой строке таблицы приводится информация для одного Шага Программы, а столбцы содержат параметры для этого Шага, собранные из разных папок дерева параметров прибора. Такое представление удобно при необходимости видеть все параметры Программы технолога в одном месте.

10.6.3 Меню Конфигуратора

Главное меню Конфигуратора включает 5 пунктов: Файл, Прибор, Режимы программы, Сервис и Справка.

Список команд меню с указанием «горячих» кнопок приведен в таблице 10.4.

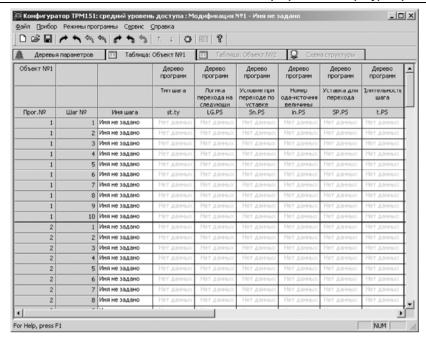


Рисунок 10.6 – Рабочее окно программы «Конфигуратор ТРМ151».

Лист «Таблица программ»

Таблица 10.4 – Команды меню

Команда	Назначение	Клавиши	
Меню Файл	Работа с файлами конфигурации		
Новая Конфигурация	Создание новой конфигурации прибора	Ctrl+N	
Новый уровень/	Загрузка текущей конфигурации на другом уровне доступа		
модификация	или переход к другой модификации		
Открыть	Открытие файла (с расширением .151)	Ctrl+O	
Сохранить	Сохранение конфигурации в файл	Ctrl+S	
Сохранить как	Сохранение конфигурации в файл с другим именем		
Экспорт в DBF	Экспорт таблицы значений параметров в формат DBase-III		
Импорт из DBF	Импорт таблицы значений параметров из формата DBase-III		
Печать таблицы	Печать листа «Таблица программ»		
программ			
{Список файлов}	Список 4-х последних файлов с конфигурациями		
Выход	Закрытие программы		
Меню Прибор Работа с прибором (чтение/запись параметров)			
Считать все	Считывание значений всех параметров из прибора в	Alt+R	
параметры	компьютер		
Записать все	Запись всех параметров из компьютера в прибор	Alt+W	
параметры			

10 Программа «Конфигуратор ТРМ151»

Продолжение таблицы 10.4

Команда	Назначение	Клавиши
Записать	Запись измененных значений параметров из компьютера	Alt+U
только	в прибор. После редактирования значения параметр	
измененные	помечается зеленым цветом, после записи в прибор	
	шрифт становится черным	
Сравнить	Сравнение значений параметров прибора и открытой	Alt+C
с параметрами	конфигурации	
в приборе		
Записать только	Запись только тех параметров, которые не записались	
параметры	при предыдущей команде записи (эти параметры	
с ошибками	помечены красным цветом)	
Считать все	Считывание значений всех параметров выделенной	Alt+Ctrl+R
параметры	папки из прибора в компьютер	
выделенной папки		
Записать все	Запись значений всех параметров выделенной папки из	Alt+Ctrl+W
параметры	компьютера в прибор	
выделенной папки	The property of the state of th	
Записать только	Запись измененных значений параметров выделенной	Alt+Ctrl+U
измененные	папки из компьютера в прибор. После редактирования	
параметры папки	значения параметр помечается зеленым шрифтом, после	
	записи в прибор шрифт становится черным	
Сравнить параметры	Сравнение значений параметров выделенной папки	Alt+Ctrl+C
папки с параметрами	прибора и открытой конфигурации	7
в приборе	inprisopa ii o inpairon non-pris paarin	
К предыдущему	Выделение в дереве параметров предыдущего	Alt+↑
проблемному	параметра, считанного из прибора или записанного в него	7 (12.1
параметру дерева	с ошибкой. Такой параметр помечен красным цветом, в	
Порожения при дорого	поле «Ошибки ввода-вывода» указывается причина	
	ошибки	
К следующему	Выделение в дереве параметров следующего параметра,	Alt+↓
проблемному	считанного из прибора или записанного в него с ошибкой.	
параметру дерева	Такой параметр помечен красным цветом, в поле	
	«Ошибки ввода-вывода» указывается причина ошибки	
Отчет	Выдача текстового документа со значениями параметров,	
о структуре	определяющих структуру прибора	
конфигурации	a harter of the Abb Abb hareha	
Считать параметры	Считывание служебных параметров, необходимых для	
структуры	построения таблиц Программ технолога.	
Графики уставки	Вызывает окно редактирования графика Коррекции	
, , , , , , , , , , , , , , , , , , , ,	уставки	
Опрос отдельного	Доступ к отдельным параметрам прибора (только для	Alt+S
параметра	опытных пользователей)	
Проверка связи с	Считывание имени прибора и номера версии его	Alt+N
прибором (vEr, dEv)	прошивки. Используется для проверки связи с прибором.	-
Меню Режимы	Определение режимов работы программы (записи,	
программы	чтения, отображения параметров)	
Показывать	Показывает индексы параметров. Линейные индексы	
линейные	параметров необходимы при создании новых программ,	
индексы	работающих с прибором	
	I beceries distributed by	

Окончание таблицы 10.4

Команда	Назначение	Клавиши
Режим автома-	В этом режиме программа автоматически считывает	
тического чтения	из прибора значения параметров открываемой папки.	
	Для отключения режима необходимо снять флаг перед	
	данным пунктом меню. Это необходимо, например, при	
	работе с Конфигуратором при отключенном приборе.	
Режим немедленной	В этом режиме запись значения параметра	
записи	осуществляется сразу после его ввода.	
Не передавать	В этом режиме прибор не производит чтения и записи	
атрибуты	атрибутов параметров. Режим немного ускоряет работу,	
параметров	но может привести к ошибкам ввода-вывода, если в	
	приборе установлены атрибуты защиты.	
Сетевые	Открывает окно, в котором можно изменить сетевые	
параметры	параметры программы	
программы		
Toolbar	Отображается панель инструментов	
Statusbar	Отображается панель подсказок (внизу окна)	
Преобразователь	Выбирает тип преобразователя RS-485 – RS-232.	
	Автоматический преобразователь позволяет ускорить	
	обмен по сети	
Меню Сервис	Меню Сервис Дополнительные опции (инициализация прибора,	
	смена паролей и пр.)	
Инициализировать	Восстановление в приборе заводских установок	Alt+I
прибор		
Послать команду	Посылает команду перехода прибора на новые сетевые	Alt+A
APLY	настройки	
Смена паролей	Изменение паролей для полного и среднего уровней	
	доступа.	
Экспорт списка	Позволяет создать список параметров прибора в	
параметров в HTML	формате НТМL.	
Экспорт протокола	Позволяет экспортировать протокол опроса оперативных	
измерений в Excel	параметров в MS Excel.	
Меню Справка	Справочная информация	
Содержание справки	Справочная информация о работе с Конфигуратором	
О программе	Справочная информация о Конфигураторе	

10.6.4 Панель инструментов Конфигуратора

— соответствует команде Новый из меню Файл.

– соответствует команде Открыть из меню Файл.

– соответствует команде Сохранить из меню Файл.

- соответствует команде Считать все параметры из меню Прибор.- соответствует команде Записать все параметры из меню Прибор.

 соответствует команде Записать только измененные из меню Прибор (стрелка – зеленого цвета).

I	B
Į	

 соответствует команде Записать только параметры с ошибками из меню Прибор (стрелка – красного цвета).

– соответствует команде Считать все параметры папки из меню Прибор.

t

- соответствует команде Записать все параметры папки из меню Прибор.

43

 соответствует команде Записать только измененные параметры папки из меню Прибор.

Ť.

– соответствует команде К предыдущему проблемному параметру из меню Прибор.

573

– соответствует команде К следующему проблемному параметру из меню Прибор.

3

- соответствует команде Инициализировать прибор из меню Сервис.

(

- соответствует команде О программе... из меню Справка.

10.7 Работа с Конфигуратором

С помощью Конфигуратора пользователь может создать несколько разных конфигураций для одного прибора, сохранить их и загружать в прибор ту конфигурацию, которая необходима в конкретный момент.

Пользователь можете создать новую конфигурацию, не прерывая связь компьютера с прибором. До тех пор, пока пользователь не запишет новую конфигурацию в прибор, он будет работать со старой конфигурацией.

Перед записью новой конфигурации в прибор рекомендуется провести инициализацию прибора, т. е. удаление старой конфигурации.

10.7.1 Создание новой конфигурации

Для создания новой конфигурации <u>следует</u> выбрать из меню **Файл** команду **Новый**

(Ctrl+N) или воспользоваться кнопкой на панели инструментов. На листе «Дерево программ» рабочего окна программы появится новый корневой каталог «Конфигурация ТРМ151 (Имя не задано)». Последовательно разворачивая дерево параметров, вводятся нужные значения. В результате создается конфигурация, которая сохраняется в файле или загружается в прибор.

Новая конфигурация автоматически создается при старте программы.

Подсказка! Чтобы развернуть дерево параметров необходимо нажать правую клавишу манипулятора «мышь», наведя курсор на кнопку «плюс» у около названия папки. Для сворачивания дерева – кнопка «минус» около названия развернутой папки.

При создании новой конфигурации ранее считанные значения конфигурационных параметров прибора обнуляются.

10.7.2 Загрузка программы на другом уровне доступа или смена модификации

Из меню **Файл** выбирается команда **Новый уровень/модификация**. Программа запрашивает подтверждение намерения пользователя переключиться на другой уровень/модификацию. После нажатия кнопки **[Да]** запускается **Мастер конфигураций ТРМ151**. Выполняя его указания по п. 10.3, загружается необходимая модификация или выбирается уровень доступа.

10.7.3 Открытие конфигурации из файла

После загрузки файла конфигурации в полях «Значение» параметров появятся значения, которые были записаны в файле. Далее их можно записать в прибор или отредактировать и потом записать в прибор или в файл.

10.7.4 Сохранение конфигурации в файл

Сохранение конфигурации в файл осуществляется командами из меню Файл Сохранить

(Ctrl+S) или Сохранить как. Также можно воспользоваться кнопкой на панели инструментов. Команда Сохранить как вызывает окно стандартного диалога, где необходимо задать имя и место расположения файла. Команда Сохранить сохраняет файл под существующим именем.

Файл конфигурации имеет расширение .151.

10.7.5 Считывание конфигурации из прибора

При операции считывания происходит считывание значений параметров из прибора и их отображение в рабочем окне Конфигуратора в определенной папке.

Для считывания конфигурации из прибора предусмотрены три режима: считывание всех параметров из прибора, считывание параметров только текущей папки или режим автоматического чтения.

Считывание всех параметров из прибора.

Для считывания всех параметров из прибора следует выбрать из меню Прибор команду

Считать все параметры из прибора (Alt+R) или воспользоваться кнопкой 📶 на панелинструментов.

Считывание всех параметров из прибора может занять длительное время. В процессе считывания на фоне главного окна программы появится информационное окно со статистическими сведениями о ходе процесса. Его закрытие означает, что процесс считывания параметров из памяти прибора окончен. В дереве параметров отобразятся считанные значения.

Режим автоматического чтения.

Данный режим позволяет автоматически считать значения параметров, содержащихся в открываемой папке. Такое считывание происходит быстрее, чем считывание всех параметров из прибора.

Считывание параметров в этом режиме возможно, если до этого значения параметров, содержащиеся в этой папке, считаны не были (т.е. в полях «Значение» было указано «Нет данных»).

Для включения режима автоматического чтения следует установить флаг в меню **Режимы** программы → **Режим автоматического чтения**.

Примечание – При работе без подключенного прибора **Режим автоматического чтения** рекомендуется отключить.

Считывание параметров только текущей папки

В процессе работы, например, при автонастройке ПИД-регулятора, прибор может изменить значение своих параметров. Они могут не совпасть со значениями, находящимися в Конфигураторе и считанными ранее. Поэтому бывает необходимость обновить информацию в

параметрах, находящихся в папке Конфигуратора. При этом режим автоматического чтения не позволяет выполнить эту операцию, т. к. значения параметров в Конфигураторе уже есть.

Для считывания параметров только текущей папки необходимо выделить ее, установив на ней курсор, и выбрать команду **Считать все параметры выделенной папки** из меню **Прибор** или нажать кнопку

10.7.6 Редактирование значений параметров

Для изменения значения параметра следует поместить курсор мышки в поле «Значение» этого параметра и два раза нажать правую клавишу, — осуществляется переход в режим редактирования.

Значение задается с клавиатуры (для числового параметра) или выбирается из раскрывающегося списка. Для завершения ввода необходимо нажать кнопку **Enter**.

Если значение не помещается по ширине колонки, ее можно расширить до нужного размера. Для этого в верхней части экрана курсор помещается на границу двух столбцов в строке с заголовками, находится положение указателя, при котором отобразится двунаправленная стрелка, и, с удержанием нажатой левой кнопки мышки, передвигается граница столбца влево или вправо.

Измененные значения отображаются зеленым цветом и сохраняются только в памяти программы. Далее пользователь можете записать изменения в прибор или сохранить их в файл.

10.7.7 Инициализация прибора

Перед записью новой конфигурации в прибор требуется произвести его инициализацию. Инициализация прибора корректно стирает старую конфигурацию и позволяет записать в него новую. При попытке записать новую конфигурацию без удаления старой может возникнуть конфликт значений параметров, и прибор заблокирует запись части новых параметров.

Функция инициализации доступна только при загрузке Конфигуратора на полном уровне доступа (см. п. 10.5).

Для инициализации прибора следует выбрать из меню **Сервис** команду **Инициализировать прибор** или воспользоваться кнопкой на панели инструментов.

10.7.8 Запись значений параметров в прибор

При операции «Запись» происходит переписывание значений параметров из окна Конфигуратора в прибор.

Пользователь может записать в прибор все параметры, только измененные или те, которые сам выберет для записи. Кроме того, пользователь можете включить режим немедленной записи.

Запись всех параметров в прибор.

Запись всех параметров в прибор необходимо производить, если Вы хотите сменить модификацию прибора или записать в него нестандартную конфигурацию, созданную компанией-производителем.

Для записи всех параметров в прибор следует выбрать из меню **Прибор** команду

Записать все параметры в прибор (Alt+W) или воспользоваться кнопкой \textstyle{\textstyle{1}}\textstyle{1}\textstyle{2}\t

Запись только отредактированных параметров

Такой способ записи позволяет записать только отредактированные параметры, даже если

они находятся в разных папках.

Для записи только отредактированных параметров следует выбрать из меню **Прибор** команду **Записать только измененные из меню Прибор (Alt+U)** или воспользоваться кнопкой на панели инструментов.

Внимание! Отредактированные значения параметров отображаются зеленым цветом. После записи в прибор цвет всех записанных параметров становится черным.

Запись параметров только текущей папки

Пользователь может произвести запись параметров только текущей папки. Такая запись происходит быстрее, чем запись всех параметров.

Для записи параметров только текущей папки необходимо выделить ее, установив на ней курсор, и выбрать команду Записать все параметры выделенной папки (Alt+Ctrl+W) из меню Прибор или нажать кнопку

Запись только отредактированных параметров текущей папки

Для записи только отредактированных параметров текущей папки необходимо выделить ее, установив на ней курсор, и выбрать команду Записать только измененные параметры папки (Alt+Ctrl+U) из меню Прибор или нажать кнопку

Режим немедленной записи

В данном режиме Конфигуратор записывает значение параметра в прибор сразу после его изменения.

Для включения режима необходимо установить флаг в меню **Режимы программы** \rightarrow **Режим немедленной записи**.

Примечание – При работе без подключенного прибора Режим немедленной записи рекомендуется отключить.

10.8 Просмотр и сохранение параметров текущего состояния

Пользователь может регистрировать на ПК параметры текущего состояния (оперативные параметры) ТРМ151-10, показанные на рисунке 10.7.

10.8.1 Просмотр значений оперативных параметров

Для просмотра значений оперативных параметров следует открыть папку **ОПРОС ОПЕРАТИВНЫХ ПАРАМЕТРОВ** и установить флаги около тех параметров, которые пользователь хочет опрашивать (см. рисунок 10.7). Задается период опроса параметров в миллисекундах. Период опроса по умолчанию составляет 1000 мс.

В случае, если возникнет ошибка считывания параметра, в таблице будет выведена ее причина, при этом строка параметра помечается красным шрифтом.

Измеряемые прибором значения выводятся на монитор в преобразованном виде:

- для термопреобразователей и термопар выводится температура, измеренная в градусах по Цельсию;
- для активных датчиков значения пересчитываются в соответствии с единицами диапазона измерения (см. параметры Ain.H и Ain.L)

В процессе измерения прибор контролирует работоспособность датчиков и в случае возникновения аварии выводит причину неисправности в поле «Значение».

Значение выходной мощности Регулятора выводится в диапазоне от 0 до 1.

10.8.1 Сохранение значений оперативных параметров в файл

Для сохранения в файл считанных с прибора значений оперативных параметров следует установить флаг перед строкой **Имя файла для сохранения протокола** (см. рисунок 10.7). Сохранение в файл начнется немедленно.

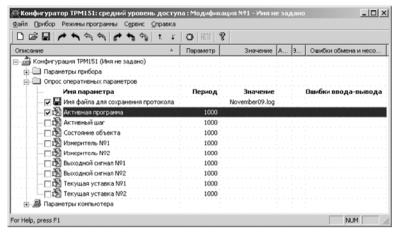


Рисунок 10.7 – Регистрация оперативных параметров в Конфигураторе

Протокол сохраняется в текстовый файл с расширением .log, который в дальнейшем может быть загружен в любую электронную таблицу. Для загрузки файла в Microsoft Excel можно воспользоваться командой меню Сервис → Экспорт протокола измерений в Excel.

По умолчанию программа предлагает имя файла для сохранения, состоящее из текущего месяца и даты. Имя файла указано в поле «Значение». Файл можно переименовать. Для этого необходимо установить курсор на имени файла, дважды нажать на правую клавишу мыши и набрать новое имя. Файл создается в той же папке, где установлена программа «Конфигуратор ТРМ151».

10.9 Программа «Быстрый старт TPM151-10»

Программа «Быстрый старт TPM151-10» предназначена для упрощения первой настройки прибора TPM151-10.

Не рекомендуется использовать программу «Быстрый старт TPM151-10» в следующих случаях:

- при программировании прибора TPM151-10, конфигурация которого уже была до этого изменена. В этом случае следует использовать программу «Конфигуратор TPM151»;
- при программировании приборов других модификаций ТРМ151-хх. Для каждой модификации ТРМ151-хх существует своя программа быстрого старта. Любую из них пользователь может бесплатно скачать с сайта компании OBEH www.owen.ru.

Для запуска программы «Быстрый старт TPM151-10» следует запустить файл **EasyGoTRM151-03.exe** с диска, входящего в комплект поставки. Далее программа предлагает ряд вопросов, отвечая на которые, пользователь производит конфигурирование прибора.

11 Программирование с помощью кнопок на лицевой панели прибора

11.1 Соответствие символов на цифровом индикаторе буквам латинского алфавита

Соответствие начертания символов на цифровом индикаторе буквам латинского алфавита приведено в таблице 11.1.

Таблица 11.1 - Соответствие начертания символов на цифровом индикаторе буквам латинского алфавита

11.2 Общие принципы программирования

Общая схема задания параметров приведена на рисунке 11.1.

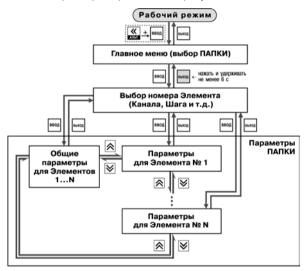


Рисунок 11.1 – Общая схема задания параметров

11.2.1 Основные правила при работе в Главном меню и при выборе Элемента

- - При этом мигает тот ЦИ, на котором изменяется информация.
- знак конца списка при циклическом перемещении.
 - ______ обозначение группы «Общие параметры» при выборе элемента (Канала, Программы и т. д.).

- После того, как пользователь совершает выбор, необходимо нажать кнопку
- Переход на предыдущий уровень всегда осуществляется кнопкой

11.2.2 Вход в режим Программирования. Главное меню

Для входа в режим Программирования необходимо нажать комбинацию кнопок Пользователь попадет в Главное меню параметров (рисунок 11.2).

На ЦИ1 отображаются имена папок, в которые сгруппированы параметры.

Кнопками $^{igstyle 2}$ и $^{igstyle 2}$ осуществляется выбор нужной папки, после чего необходимо нажать кнопку $^{igstyle 8800}$.

Рисунок 11.2 – Главное меню параметров

11.2.3 Выбор Элемента (Канала, Программы, Шага и т. д.)

Параметры некоторых папок сгруппированы по Элементам (Каналам, Входам, Программам/Шагам и т. д., при этом часть параметров является общей для всех Элементов (см. рисунок 11.1).

На ЦИ1 при выборе отображается обозначение элемента (« $\it LH$ » или « $\it LHR$ » — Канал, « $\it PraL$ » — Программа и <u>т. д</u>.), на ЦИ2 - номер Элемента.

Кнопками

и

осуществляется выбор нужного Элемента, после чего необходимо нажать кнопку

вод.

11.2.4 Вход в папку с параметрами. Индикация при задании параметра

Имя параметра (мигает) При входе на В папку индикаторе отображается ← Значение параметра ЦИ2 информация о первом параметре. — «Шаг» (*⊑Н — «*Канал».*Рг — «*Программа» и т.д.). ЦИ3 Показания цифровых ЦИ4 номер Шага (Канала, Программы и т.д.) индикаторов пап задании

параметров (на примере параметра **ST.TY** для Шага № 1 Программы технолога) приведены на рисунке 11.3.

Рисунок 11.3 – Показания цифровых индикаторов при задании параметров

11.2.5 Перемещение между параметрами в папке

- Перемещение между параметрами осуществляется кнопками
 № (№ (№) (циклически в любую сторону) (рисунок 11.4). При этом мигает имя параметра на ЦИ1.
 знак конца списка при циклическом перемещении.
 обозначение входа во вложенную папку.
- Пользователь выбирает Элемент (Канал, Шаг и т. д.) и попадает в папку для этого Элемента, но перемещаться теперь может между параметрами всех Элементов последовательно (циклически в любую сторону):

общие параметры \to параметры для Элемента 1 \to \to параметры для Элемента 2 \to ... \to общие параметры

Rapamerpы nanku

Рисунок 11.4 – Перемещение по параметрам папки

11.2.6 Задание значения параметра

- Осуществляется выбор параметра для изменения, после чего ввод нажимается кнопка ввод (рисунок 11.5). При этом начнет мигать значение параметра на ЦЙ2. ЫL Значение задается кнопками 🔊 и 🕏 Если параметр символьный, то при нажатии кнопок 🔊 и 🚩 Измените значения параметра последовательно выводятся на ЦИ2. значение Если параметр числовой, то кнопка 🖄 увеличивает, а кнопка 💆 кнопками уменьшает значение параметра. 廖廖 Если нажать кнопку 🔊 или 🚩 и удерживать ее, то изменение ввод
- значения ускорится.

 После того, как значение задано, нажимается кнопка
- После того, как значение задано, нажимается кнопка (для выхода без записи нового значения нажимается кнопка (для выхода без записи нового значения нажимается кнопка (для выхода без записи нового значения параметра на ЦИ1.)

Рисунок 11.5 — Изменение значения параметра

11.2.7 Сдвиг десятичной точки

При изменении значения параметра кнопками 🖎 и 🛂 десятичная точка не меняет своего положения, что ограничивает максимальное значение параметра.

Например, на ЦИ2 отображается значение **«8.974»**. При нажатии кнопок 🔊 и 💆 будет происходить изменение значения, начиная с последнего разряда:

$$(8.974) \rightarrow (8.975) \rightarrow (8.976) \rightarrow ...$$

Максимальное значение, которое можно установить на ЦИ2, - «9.999».

Для ввода большего числа необходимо сдвинуть десятичную точку.

Для сдвига десятичной точки:

— перед началом редактирования значения (т.е. когда на ЦИ1 мигает имя параметра) следует нажать и удерживать кнопку [800]. Через некоторое время начнется циклический сдвиг вправо десятичной точки на ЦИ2:

$$(8.974) \rightarrow (89.74) \rightarrow (897.4) \rightarrow (8974) \rightarrow (8.974) \rightarrow ...$$

- следует дождаться момента, когда десятичная точка установится в нужное

положение, и отпустить кнопку вол. Теперь пользователь может отредактировать значение параметра.

11.2.8 Вложенные папки

Некоторые папки имеют в своем составе одну или несколько вложенных папок (например, папка «Регуляторы»).

Вложенная папка обозначается на ЦИ2 знаком [[_____]]. При этом название папки показано на ЦИ1 (см. рисунок 11.6).

Чтобы попасть во вложенную папку следует нажать кнопку $^{\mbox{\tiny BBOQ}}$

Все операции с параметрами во вложенной папке выполняются так же, как и в основной папке.

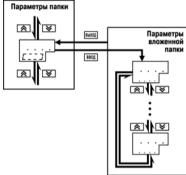


Рисунок 11.6 – Работа с вложенной папкой

11.3 Схемы задания параметров

Подробные схемы задания параметров приведены на рисунках 11.7 – 11.18. Недостающие схемы представлены в других разделах РЭ.

Внимание! Основные параметры конфигурации (в частности, параметры Регуляторов и Выходных элементов) настоятельно рекомендуется задавать с помощью программы «Конфигуратор TPM151».

11.4 Задание параметров программ технолога в режиме «Быстрого» программирования

Задание параметров Программ технолога и Уставок можно производить также в режиме «Быстрого» программирования. Схема режима «Быстрого» программирования представлена на рис. 11.7.

Для входа в режим «Быстрого» программирования необходимо нажать кнопки

При Входе в режим «Быстрого» программирования во время выполнения программы прибор сразу переходит к параметрам текущего шага, при Входе в режим «Быстрого» программирования из режима **STOP** прибор переходит к параметрам Шага 1 Программы 1.

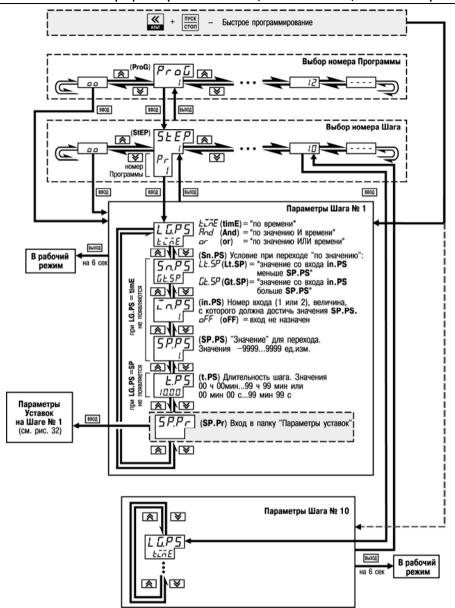


Рисунок 11.7 – Схема задания параметров программ технолога в режиме Быстрого программирования

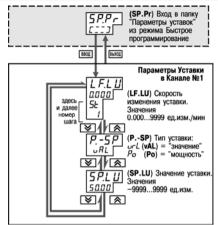


Рис. 11.8 – Схема задания параметров Уставки в режиме Быстрого программирования

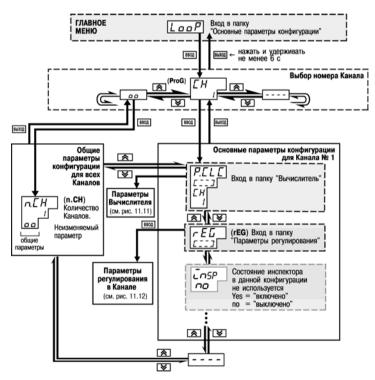


Рисунок 11.9 - Схема задания основных параметров конфигурации

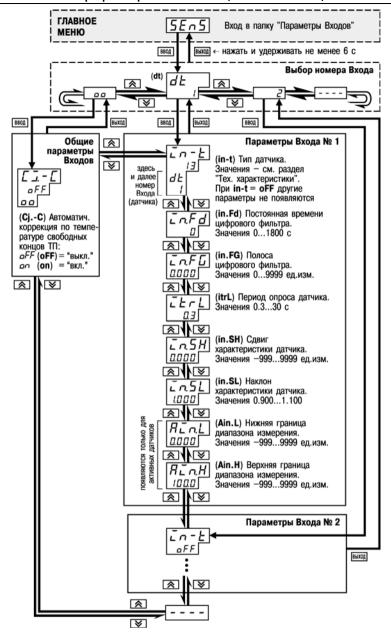


Рисунок 11.10 - Схема задания параметров Входов

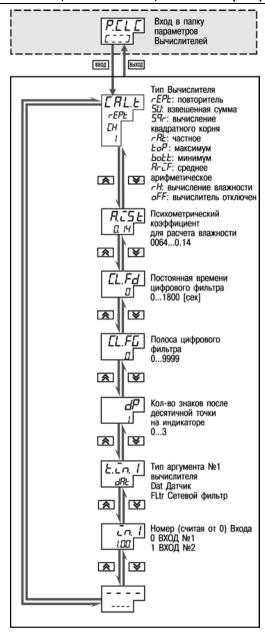


Рисунок 11.11 - Схема задания параметров Вычислителей

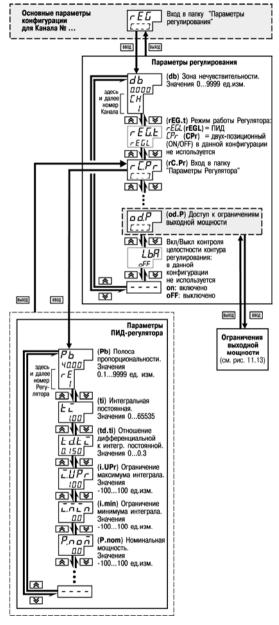


Рисунок 11.12 – Схема задания основных параметров конфигурации (продолжение). Задание параметров регулятора

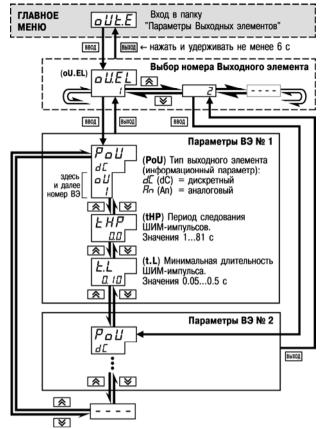


Рисунок 11.13 – Схема параметров Выходных элементов

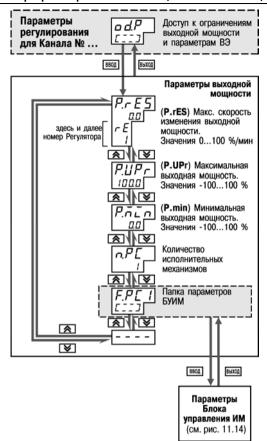


Рисунок 11.14 — Схема задания основных параметров конфигурации (продолжение). Задание ограничений выходной мощности

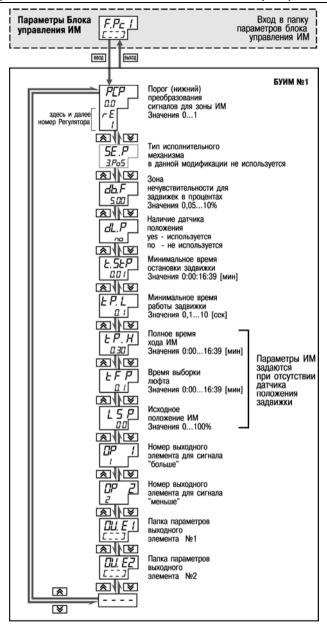


Рисунок 11.15 - Схема задания параметров БУИМ

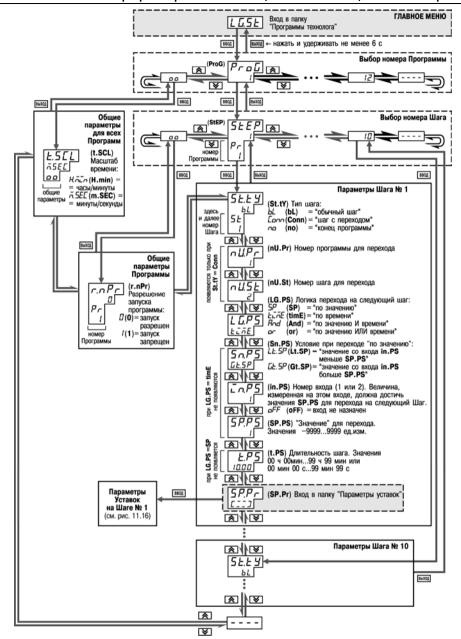


Рисунок 11.16 - Схема задания параметров Программ технолога и Уставок

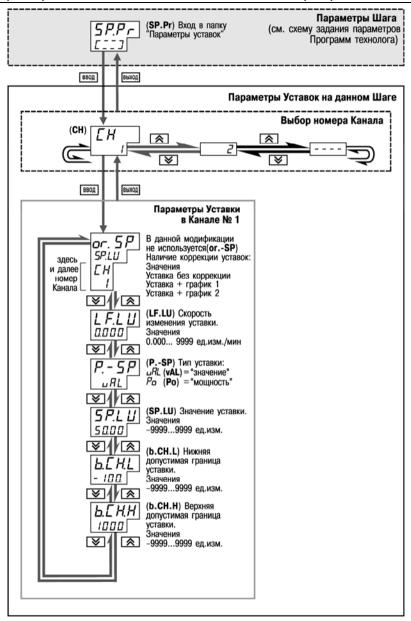


Рисунок 11.17 — Схема задания параметров Программ технолога и Уставок (продолжение). Задание параметров Уставок на данном Шаге Программы

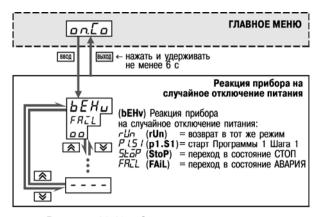


Рисунок 11.18 – Схема задания реакции на случайное отключение напряжения питания

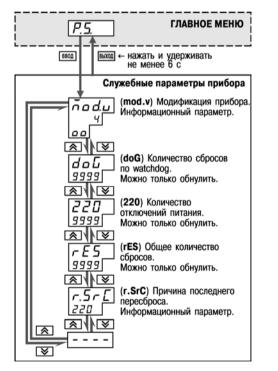


Рисунок 11.19 - Схема доступа к служебным параметрам прибора

12 Эксплуатация прибора ТРМ151-10

12.1 Включение прибора

После включения в сеть прибор переходит в режим, который описан параметром **Реакция после восстановления питания bEHv** (см. п. 3.9).

При первом включении прибор находится в режиме СТОП, для выполнения автоматически установлена первая Программа и первый Шаг.

12.2 Выбор текущей программы и текущего шага для выполнения

В ТРМ151-10 на ЦИ4 всегда отображаются через точку номера текущих Программы и Шага. Именно текущая Программа, начиная с текущего Шага, будет запущена на выполнение при нажатии кнопки [ток].

Для того, чтобы выбрать необходимые для выполнения Программу и Шаг, необходимо последовательно выполнить действия, представленные в таблице 12.1.

Таблица 12.1 – Выбор текущей программы и текущего шага

Действия пользователя	Реакция прибора
1. Убедиться, что прибор находится в состоянии СТОП.	ци2: 5koP.
2. Нажать кнопку вод и, удерживая ее нажатой, нажать кнопку стоп.	ЦИ1: SEL . Прибор перейдет в режим Выбора Программы и Шага.
3. Для подтверждения выбора операции по смене текущих Программы и Шага нажать кнопку (для отмены – нажать кнопку (для отмены).	
4. Выбрать с помощью кнопок и объект для изменения: — номер текущей Программы; — номер текущего Шага.	ЦИ2: "Рг .б. ЦИ2: "5ŁР .
5. Для подтверждения выбора объекта для изменения нажать кнопку	На ЦИ1 начнет мигать изменяемое значение номера Программы или Шага.
6. Установить требуемое значение номера Программы (Шага) кнопками 🔊 и 💟.	
7. Для подтверждения нового значения нажать кнопку (для отмены – нажать кнопку (для отмены).	ЦИ1 перестанет мигать.
8. Для выхода из режима Выбора Программы и Шага нажать кнопку	

Для того, чтобы выбрать необходимые для выполнения Программу и Шаг, необходимо последовательно выполнить действия, представленные в табл. 12.1.

Примечание — При выборе номера программы ($nPr\bar{L}$) прибор разрешает выбрать только программы, запуск которых разрешен (установлено значение «Разрешен» в параметре rnPr).

12.3 Запуск и остановка программы технолога

Независимо от того, выполняется Программа или нет, прибор считывает текущие измерения с подключенных датчиков и отображает их на ЦИ1.

В таблице 12.2 представлены действия пользователя при запуске и остановке программы

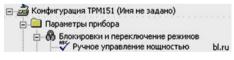

технолога и реакция прибора на них.

Таблица 12.2 – Запуск и остановка программы технолога

Действия пользователя	Реакция прибора	
Запуск программы технолога		
1. Нажать кнопку стоя и удерживать ее нажатой в течение 2 - 3 сек.	ЦИ2: Уставка, при этом светится светодиод «УСТАВКА» или:	
	ЦИ2: время, прошедшее от начала текущего Шага, при этом светится светодиод «ВРЕМЯ ШАГА».	
	Начинает выполняться текущая Программа с текущего Шага (их номера отображаются на ЦИ4 через точку)	
Переход в состояние ПАУЗА и обратно		
1. Нажать кнопки выход + стоп	ЦИ2: Уставка (время шага) → г ⊔л.Р .	
2. Для выхода из режима ПАУЗА следует еще	ЦИ2: гЦпР → Уставка (время шага).	
раз нажать кнопки	Выполнение Программы продолжается	
Принудительная остановка Программы		
1. Нажать кнопку	ЦИ2: Уставка (время шага) → 5ŁoP . Выполнение Программы останавливается. Прибор переходит в состояние СТОП. На ЦИ4 отображаются через точку номера текущих Программы и Шага, которые будут запущены при нажатии кнопки тото.	
Примечание Если Программа раб		
Примечание . Если Программа работает по бесконечному циклу, остановить можно только принудительно с помощью кнопки стоп.		
Окончание выполнения Программы. Перевод в состояние СТОП		
	После окончания нециклической программы	
	прибор автоматически переходит в состояние КОНЕЦ ПРОГРАММЫ.	
	ЦИ2: Уставка (время шага)→ Елd .	
1. Для перевода прибора в режим СТОП	ЦИ2: End → 5ŁaP .	
нажать кнопку стоя и удерживать ее нажатой в течение 2-3 с.	На ЦИ4 восстанавливаются номер Программы и номер Шага, которые были запущены.	

12.4 Режим ручного управления Уставкой

Чтобы ручное изменение Уставки стало доступным, необходимо снять блокировку режима Ручного управления. Для этого следует установить для параметра Ручное управление

bL.rU значение «разрешено» (см. также схему на рисунке 12.1).

В таблице 12.3 представлены действия пользователя в режиме ручного управления Уставкой и реакция прибора на них.

Таблица 12.3 – Ручное управление Уставкой

Tuosingu 12:0 1 y moe ympubsienine serubic	<i>51</i> 1
Действия пользователя	Реакция прибора
1. Нажать кнопки + нажатия важен) для перехода в режим Ручного управления Уставкой.	Значение Уставки на ЦИ2 начнет мигать. Засветится светодиод « РУ1 »
2. Задать требуемое значение Уставки с помощью кнопок: ———————————————————————————————————	Изменяемое значение Уставки мигает на ЦИ2.
3. Для выхода из режима Ручного управления следует еще раз нажать кнопки + нама +	Значение Уставки перестанет мигать.

Значение Уставки, которое *у*станавливается режиме Ручного **управления**. должно находиться границах, заданных параметрами b.Ch.L и **b.Ch.H**. Если пользователь установит значение Уставки, лежащее вне этих через 3 границ, то секунды после прибор автоматически восстановит то значение Уставки, которое задано при конфигурировании прибора.

Заданное вручную значение Уставки не заносится в энергонезависимую память. При повторном запуске Программы восстанавливается исходное значение, заданное при конфигурировании

прибора.

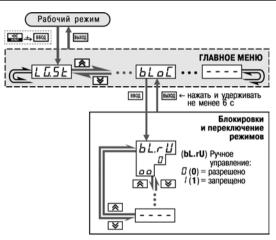
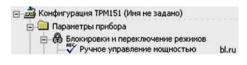



Рисунок 12.1 – Схема установки параметра блокировки ручного управления кнопками на лицевой панели прибора

12.5 Режим ручного управления выходной мощностью

Чтобы ручное изменение выходной мощности Регулятора стало доступным, необходимо снять блокировку режима Ручного управления. Для этого следует установить для параметра Ручное управление bL.rU значение «разрешено» (см. также схему на рисунке 12.1).

Внимание! Регулятор автоматически отключается при переходе в режим Ручного управления выходной мощностью.

В таблице 12.4 представлены действия пользователя в режиме ручного управления выходной мощностью и реакция прибора на них.

Таблица 12.4 – Ручное управление выходной мощностью

Действия пользователя	Реакция прибора
1. Нажать кнопки + + (порядок нажатия важен) для перехода в режим Ручного управления выходной мощностью.	Значение мощности на ЦИЗ начнет мигать. Засветится светодиод «РУ1».
2. Задать требуемое значение мощности с помощью кнопок:	Изменяемое значение мощности (в %) мигает на ЦИЗ.
3. Для выхода из режима Ручного управления следует еще раз нажать кнопки	Значение мощности на ЦИЗ перестанет мигать.

12.6 Автоматическая настройка ПИД-регулятора

Задачей автонастройки ПИД-регулятора является определение за короткое время приблизительных параметров настройки Регулятора, которые используются в последующем процессе регулирования.

Особенностью АНР является то, что в ходе ее выполнения возможно регулирующее воздействие на объект в большом диапазоне и с большой скоростью изменения. Это может привести к выходу из строя объекта регулирования, например, вследствие гидравлических ударов или недопустимых температурных напряжений.

12.6.1 Общие правила проведения автонастройки ПИД-регулятора

- 12.6.1.1 Процесс автонастройки проходит непосредственно на объекте, поэтому для ее осуществления необходимо иметь сконфигурированный прибор с подключенными к нему датчиками и исполнительными механизмами.
- 12.6.1.2 Условия, в которых проводится автонастройка, должны быть максимально приближены к реальным условиям эксплуатации объекта.
- 12.6.1.3 В случае если технические условия эксплуатации объекта не допускают изменения регулирующего воздействия в широком диапазоне и со значительными скоростями изменения, то автонастройку следует выполнить в ручном режиме (см. Приложение Ж.2).

12.6.2 Порядок проведения Автонастройки Регулятора Конфигурирование прибора для проведения АНР:

- 1 Сконфигурируйте прибор в соответствии с подключаемыми к нему датчиками и исполнительными механизмами.
- 2 Установите в Конфигураторе (или с лицевой панели прибора, см. рисунок 12.2) значения параметров автонастройки **Y0** и **YdoP** для выбранного Канала регулирования.
- 3 В процессе автонастройки регулируемая величина будет колебаться около Уставки **Y0** с амплитудой **YdoP**.

Слишком большое значение **YdoP** может привести к недопустимому воздействию на управляяемый объект. Напротив, при слишком малом значении **YdoP** воздействие на объект

будет недостаточным, и его параметры будут определены неточно. При регулировании температуры оптимальное значение **YdoP** находится в диапазоне 5...30 °C.

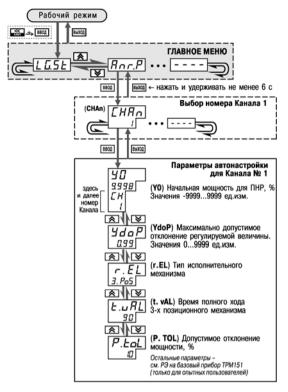


Рисунок 12.2 – Схема задания параметров Автонастройки с помощью кнопок на лицевой панели прибора

Операции, выполняемые на объекте:

Внимание! При запуске предварительной настройки прибор должен находиться в состоянии СТОП (на ЦИ2 отображается слово «*\$\mathcal{5}LaP*»).

- Осуществляется вход в режим Автонастройки, для этого одновременно нажимаются кнопки + (порядок нажатия важен). На ЦИ1 отобразится слово «Япг». Следует нажать кнопку для подтверждения.
- 2) По индикации на ЦИ1 кнопками и выбирается Канал, в котором находится настраиваемый Регулятор. Следует нажать кнопку
- Наблюдайте за процессом изменения регулируемой величины по ЦИ1 и выходного сигнала регулятора по ЦИ2.
 Прибор должен работать в режиме двухпозиционного регулирования, когда выходной сигнал регулятора переключается между максимальным Pmax = 100 % и минимальным Pmin = 0 % уровнями.
- 4) После завершения настройки, на что укажет мигающее «danE» на ЦИ2, следует

нажать кнопку . Прибор возвратится из режима Автонастройки в состояние СТОП.

12.6.3 Индикация параметров автонастройки

Во время проведения автонастройки на ЦИ1 и ЦИ2 по умолчанию отображаются текущие значения регулируемой величины и выходного сигнала Регулятора. Нажатием кнопки можно отобразить на ЦИ1 и ЦИ2 текущие значения других параметров (см. рисунок 12.3).

12.6.4 Остановка автонастройки

В таблице 12.5 представлены действия пользователя при остановке автонастройки и реакция прибора на них.

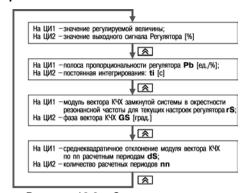


Рисунок 12.3 — Схема переключения индикации в режиме Автонастройки

Таблица 12.5 - Остановка автонастройки

radinga izid Gerandbika abrenadi peniki	•
Действия пользователя	Реакция прибора
1. Нажать кнопку	ЦИ1: ИЯ LE. Прибор запрашивает подтверждение выхода.
2. Для подтверждения выхода следует нажать кнопку (для отмены следует нажать кнопку (для отмены следует нажать кнопку (для отмены следует нажать кнопку (для отмены).	Прибор переходит в Рабочий режим индикации (при отмене – возвращается в режим Автонастройки).

12.6.5 Возможные проблемы при проведении автонастройки

В таблице 12.6 представлены возможные проблемы при проведении автонастройки и способы их устранения.

Таблица 12.6 – Возможные проблемы при проведении автонастройки

Проб-			жные проолемы при проведении а 	
лема	ЦИ2	ЦИ1	Возможные причины	Способы устранения
	5 <i>LoP</i> (StoP) мигает	5P.P <u>u</u> (SP.Pw)	Попытка запустить Основную настройку на Шаге, на котором задан Тип уставки «мощность».	Запустить Программу и Шаг, на котором задан Тип уставки «значение», или изменить Тип уставки на текущем Шаге.
Автонастройка не запускается		SP.AL (SP.AL)	Значение Уставки еще не стабилизировалось.	Дождаться стабилизации значения Уставки (см. ЦИ2) и значения регулируемой величины (см. ЦИ1). После этого продолжить автонастройку.
	FACL (FAiL)	n.Līn (n.Lin)	Объект управления существенно нелинеен (нагрев происходит значительно быстрее охлаждения; ИМ выходит на 100 % мощности).	Уменьшить амплитуду воздействия (параметр YdoP) или изменить значение Уставки.
Автонастройка завершилась неудачно		d5Po (dSKo)	Число периодов превысило допустимое значение; амплитуды колебаний этих периодов значительно отличаются друг от друга (возможно при сильных помехах). Период возмущающих колебаний слишком мал.	Увеличить амплитуду воздействий (параметр YdoP) или допуск среднеквадратичного отклонения (параметр dSKo) Увеличить интегральную постоянную (параметр ti).
онастройк неу <i>д</i>		РЬ (Pb)	Вычисленное значение полосы пропорциональности недопустимо и выходит за пределы [0,0019999]	Увеличить амплитуду воздействий (параметр YdoP) и повторить автонастройку.
Авт		E C (ti)	Вычисленное значение постоянной интегрирования недопустимо и выходит за пределы [065535]	Если она закончится с тем же результатом, использовать двухпозиционный (ON/OFF)
		P.ELd (P.CLd)	Вычисленное значение коэффициента холодильника недопустимо и выходит за пределы [0,0110,00]	регулятор

12.7 Аварийные ситуации и их возможные причины

ТРМ151-10 различает два вида АВАРИИ: Критическую и Некритическую.

12.7.1 Критическая АВАРИЯ

Критическая АВАРИЯ подразумевает невозможность дальнейшей работы Программы. Пример - обрыв термодатчика в канале регулирования температуры.

О Критической АВАРИИ сигнализируют:

- сообщение «FRIL» на ЦИ2;
- непрерывное свечение светодиода «АВАРИЯ».

После устранения причины АВАРИИ возможно возобновление работы (переключение в состояние, предшествовавшее наступлению АВАРИИ). Для этого следует нажать кнопку

Если причина АВАРИИ не была корректно устранена, то прибор автоматически вернется в состояние АВАРИЯ.

Для того чтобы принудительно перевести прибор из состояния АВАРИЯ в состояние СТОП (STOP), следует нажать кнопку (высо).

Схема управления прибором в состоянии Критической АВАРИИ показана на рисунке 5.3.

12.7.2 Некритическая АВАРИЯ

При Некритической АВАРИИ Программа продолжает выполняться. Прибор выдает предупреждение, и у оператора есть возможность оперативно устранить неисправность до того момента. когда АВАРИЯ станет критической.

О Некритической АВАРИИ сигнализируют:

- сообщение «ЯŁ», периодически (с периодом ~2 с) высвечивающееся на ЦИ4;
- мигание светодиода «АВАРИЯ».

Сброс индикации о некритической аварии осуществляется кнопкой

12.7.3 Выяснение причины АВАРИИ

Таблица 12.7 – Возможные причины аварий

Код	Причина АВАРИИ
203	Ошибка измерения при вычислении условия перехода на следующий Шаг
204, 130	Ошибка конфигурации, не задан или неправильно задан источник сигнала для проверки условия перехода на следующий Шаг
90	Ошибка конфигурации: «пустого шага» не должно быть
100	Ошибка измерения
220	Авария после отключения питания (см. параметр bEHv)
	АВАРИИ
80	Ошибочное измерение в состоянии РАБОТА
192	Не подключено Выходное устройство
208	Не подключен Регулятор
	Некритические АВАРИИ
8	Ошибка при работе в режиме Ручного управления
176	Ошибочное измерение в соседнем Канале

12.8 Информационные сообщения на цифровых индикаторах

В процессе работы прибор может выводить на цифровые индикаторы информационные сообщения, список которых представлен в таблице 12.8.

Таблица 12.8 – Список информационных сообщений на цифровых индикаторах

Сообщение	ЦИ, на котором отображается сообщение	Описание сообщения
End	ЦИ2	Выполнение Программы закончено
5toP	ЦИ2	Прибор находится в состоянии СТОП

12 Эксплуатация прибора ТРМ151-03

Окончание таблицы 12.8

Сообщение	ЦИ, на котором отображается сообщение	Описание сообщения
rUn.P	ЦИ2	Прибор находится в состоянии ПАУЗА
FRIL	ЦИ2	Прибор находится в состоянии АВАРИЯ
ЯĿ	ЦИ4	Прибор находится в состоянии Некритической аварии (надпись появляется каждые 2 с)
Pr.SP	ЦИ2	Задана Уставка типа «мощность»
oFF	ЦИ1	Датчик не подключен
d.oFF	ЦИ1	Датчик не подключен
L.L.L.L.	ЦИ1	Измеренное значение слишком мало
нннн	ЦИ1	Измеренное значение слишком велико
	ЦИ1	Обрыв датчика
0.0.0.0.	ЦИ1	Короткое замыкание датчика
no.ER	ЦИ1	Канал регулирования отключен
5EL	ЦИ1	Выбор номера Программы и Шага
Ш • (точка мигает)	ЦИЗ	Выходная мощность 100 % (отображение на двухсимвольном индикаторе)

12.9 Принудительная перезагрузка прибора

Если обнаруживаеся, что прибор TPM151-10 начал в каких-либо режимах работать некорректно (это может случиться, например, при сильных помехах или после переконфигурирования), следует осуществить его перезагрузку.

Для перезагрузки прибора необходимо одновременно нажать кнопки $+ \frac{\Gamma V V K}{C + C V K} + \frac{\Gamma V V K}{C + C V K} + \frac{\Gamma V V K}{C + C V K}$

Примечание — Обычное отключение прибора от питающей сети не приведет к перезагрузке, так как информация о состоянии прибора сохраняется в его памяти в течение примерно 2-х часов.

13 Техническое обслуживание

- 13.1 Обслуживание TPM151 при эксплуатации заключается в его техническом осмотре. При выполнении работ необходимо соблюдайть меры безопасности (глава «Меры безопасности»).
- 13.2 Технический осмотр прибора проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает в себя выполнение следующих операций:
 - очистку корпуса прибора, а также его клеммных колодок от пыли, грязи и посторонних предметов;
 - проверку качества крепления прибора;
 - проверку качества подключения внешних связей.

Обнаруженные при осмотре недостатки следует немедленно устранить.

14 Маркировка и упаковка

При изготовлении на прибор наносятся:

- наименование прибора и вариант его модификации;
- изображение знака соответствия требованиям нормативно-технической документации;
- товарный знак предприятия-изготовителя;
- уникальный штрих-код (заводской номер);
- год изготовления;
- класс точности прибора;
- изображение знака утверждения типа;
- допустимый диапазон напряжения питания и потребляемая мощность.

Упаковка прибора производится в потребительскую тару, выполненную из гофрированного картона.

15 Правила транспортирования и хранения

Прибор должен транспортироваться в упаковке при температуре от минус 25 до +55 °C и относительной влажности воздуха не более 95 % (при +35 °C).

Транспортирование допускается всеми видами закрытого транспорта.

Транспортирование на самолетах должно производиться в отапливаемых герметизированных отсеках.

Условия хранения ТРМ151 в транспортной таре на складе потребителя должны соответствовать условиям 1 по ГОСТ 15150-69.

Воздух помещения не должен содержать агрессивных паров и газов.

16 Комплектность

Прибор ТРМ151-01	1 шт.
Комплект монтажных элементов	1 шт.
Руководство по эксплуатации	1 экз.
Паспорт	1 экз.
Гарантийный талон	1 экз.
Программа конфигурирования на mini-CD	1 шт.

Примечание — Изготовитель оставляет за собой право внесения дополнений в комплектность изделия. Полная комплектность указывается в паспорте прибора.

17 Гарантийные обязательства

- 17.1 Изготовитель гарантирует соответствие прибора ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.
 - 17.2 Гарантийный срок эксплуатации 24 месяца со дня продажи.
- 17.3 В случае выхода прибора из строя в течение гарантийного срока при соблюдении пользователем условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.
- 17.4 В случае необходимости гарантийного и постгарантийного ремонта продукции пользователь может обратиться в любой из региональных сервисных центров, адреса которых приведены на сайте компании: www.owen.ru и в гарантийном талоне.

Внимание!

- 1 Гарантийный талон не действителен без даты продажи и штампа продавца.
- 2 Крепежные элементы вкладывать в коробку не нужно.

Приложение А. Габаритные чертежи

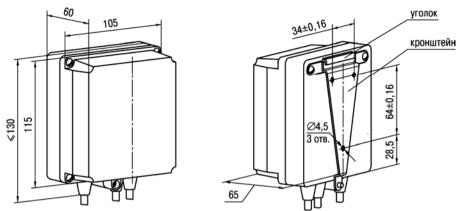


Рисунок А.1 – Прибор настенного крепления Н

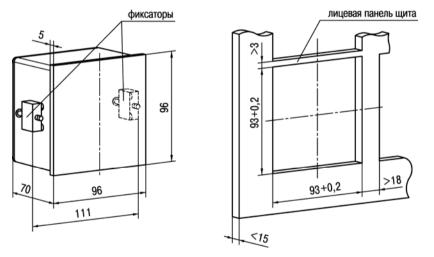


Рисунок А.2 – Прибор щитового крепления Щ1

Приложение Б. Схемы подключения

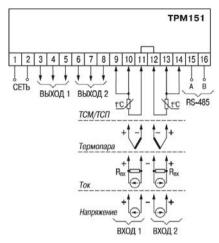


Рисунок Б.1 – Общая схема подключения ТРМ151-10

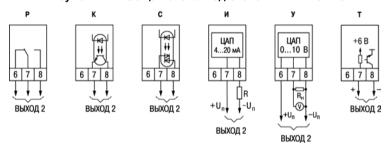


Рисунок Б.2 - Схемы подключения различных модификаций ВЭ1

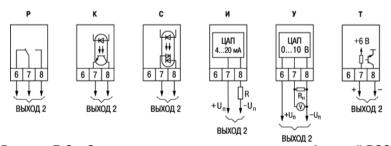


Рисунок Б.3 – Схемы подключения различных модификаций ВЭ2

Приложение В. Перечень программируемых параметров

Табл	ица В.1 – Список программируемых	параметр		
	Название	Допустимые значения		
Имя		Симв. на ЦИ2	Значения (в Конфигураторе)	
ОБЩИЕ І	ПАРАМЕТРЫ			
dEv	Название прибора		Устанавливает изготовитель	
vEr	Версия ПО		Устанавливает изготовитель	
ПАРАМЕ	ТРЫ ПРОГРАММ			
Общие па	араметры программ			
t.SCL	Масштаб времени	H.ĀĒn	Часы-минуты	
		ā.SEC	Минуты-секунды	
Програмі	ма №			
rnPr	Разрешение запуска программы	П	Разрешить	
		- 1	Запретить	
Програмі	ма №\ Шаг №			
St.tY	Тип шага	ЫL	Обычный шаг	
		Eann	Шаг с переходом	
		no	Конец программы	
LG.PS	Логика перехода на следующий	SP	По значению	
	шаг	ŁĨĀĒ	По времени	
		Rnd	По значению И времени	
		or	По значению ИЛИ времени	
Sn.PS	Условие при переходе «по	Lt.SP	Величина in.PS < значения	
	значению»	GŁ.SP	Величина in.PS > значения	
in.PS	Номер входа, величина с которого	οFF	Вход не назначен	
	должна достичь «значения» SP.PS	-i	Вход №1	
		2	Вход №2	
SP.PS	«Значение» для перехода		-99999999	
t.PS	Длительность шага		0.01092.15	
ПАРАМЕ	ТРЫ ВХОДОВ			
Общие па	араметры входов			
CjC	Автоматическая коррекция по	ωFF	Выключена	
_	температуре свободных концов ТП	חם	Включена	
Вход №				
in-t	Тип датчика	οFF	Датчик отключен	
		r.426	TCM 100M W ₁₀₀ =1,426	
		r426	TCM 50M W ₁₀₀ =1,426	
		r.385	ТСП 100П W ₁₀₀ =1,385	
		r.39 l	ТСП 100П W ₁₀₀ =1,391	
		E_L	TXK (L)	
		EY	TXA (K)	
		U-50	Датчик –50+50 мВ	
		- 385	ТСП 50П W ₁₀₀ =1,385	
		<u>r303</u> r39 (ТСИ 50П W ₁₀₀ =1,383	
			TCM 50H W ₁₀₀ =1,39H TCM 50M W ₁₀₀ =1,428	
		r428	1 CIVI 30IVI VV ₁₀₀ =1,420	

Продолжение таблицы В.1

прод	цолжение таблицы В.1 		Допустимые значения	
Имя	Название	Симв		
	Пазвание	на ЦИ2	Значения (в Конфигураторе)	
		24.20	Датчик 420 мА	
		<i>20.20</i>	Датчик 020 мА	
		<i>CO.</i> 5	Датчик 05 мА	
		<i>∐</i> □_	Датчик 01 В	
		r.42B	TCM 100M W ₁₀₀ =1,428	
		r-23	ТСМ гр. 23	
		ЕЬ	TПР (B)	
		E5	ТПП (S)	
		Er	ΤΠΠ (R)	
		En	THH (N)	
			ТЖК (Ј)	
		<u>E_R (</u>	TBP (A-1)	
		<u>E_R2</u>	TBP (A-2)	
		<u>E_R3</u>	TBP (A-3)	
		<u>E_t</u>	TMK (T)	
		P.r.0.9	Датчик положения резистивный 900 Ом	
		P0.20	Датчик положения с токовым выходом 020 мА или 420 мА	
		P0.5	Датчик положения с токовым	
		F 1.*	выходом 05 мА	
		Eont*	Датчик контактный TCH 100HW ₁₀₀ =1,617	
		<u>r.5 17</u> £425	TCM 500MW ₁₀₀ =1,426	
		£428	TCM 500MW ₁₀₀ =1,428	
		£385	TCП 500ПW ₁₀₀ =1,385	
		b33 1	ТСП 500П W ₁₀₀ =1,391	
		£39 I	TCΠ 500HW ₁₀₀ =1,617	
		£5 17	TCM 1000MW ₁₀₀ =1,426	
		£.426	TCM 1000MW ₁₀₀ =1,428	
		£.385	ТСП 1000ПW ₁₀₀ =1,385	
		t.39 (ТСП 1000ПW ₁₀₀ =1,391	
		Ł.Б /7	ТСП 1000HW ₁₀₀ =1,617	
		P. r 2.0	Датчик положения резистивный 2000 Ом	
* В прибо	ре ТРМ 151-03 эти датчики не использ	уются		
in.Fd	Постоянная времени цифрового фильтра		01800 [c]	
in.FG	Полоса цифрового фильтра		09999 [ед. изм.]	
itrL	Период опроса датчика		0,330 [c]	
in.SH	Сдвиг характеристики датчика		-999999 [ед. изм.]	
in.SL	Наклон характеристики датчика		0.91.1	
Ain.L	Нижняя граница диапазона		-9999999 [ед. изм.]	
	измерения		(только для активных датчиков)	

Продолжение таблицы В.1

1100,	должение таолицы В.1 		Допустимые значения
Имя	Название	Симв.	
		на ЦИ2	Значения (в Конфигураторе)
Ain.H	Верхняя граница диапазона		-9999999 [ед. изм.]
	измерения		(только для активных датчиков)
	ТРЫ ВЫЧИСЛИТЕЛЯ		
CAL.t	Формула вычислителя	rEPt	Повторитель
		5U	Взвешенная Сумма
		5ar	Квадратный корень
		rAt	Частное
		LOP	Максимум Минимум
		bott	Среднее Арифметическое
		ArcF	Вычислитель влажности
		rH	Вычислитель отключен
A !		OFF	
A.ist	Психрометрический коэффициент		00640.14
CL.Fd	для расчета влажности Постоянная времен		01800 [сек]
OL.Fu	цифрового фильтра		01000 [CGN]
CL.FG	Полоса цифрового фильтра		09999
dP	Кол-во знаков после десятичной		03
	точки на индикаторе		
n.in.C	Количество аргументов		1,2
	вычислителя		
t.in.1	Тип аргумента №1 вычислителя	dRĿ	Датчик
		FLEr	Сетевой фильтр
ln.1	Номер (считая от 0) Входа	П	ВХОД №1
		1	ВХОД №2
SCA1	Весовой коэф. Для формулы		-1001000
	«взвешенная сумма»	_	
t.in.2	Тип аргумента №2 вычислителя	П	ВХОД №1
		1	ВХОД №2
In.2	Номер (считая от 0) Входа		1,2
SCA2	Весовой коэф. Для формулы	0	-1001000
DARANT	«взвешенная сумма»		
	ТРЫ РЕГУЛЯТОРА		
Регулято	р №\ПИД-регулятор	1	1 0000 [07 404]
ti	Полоса пропорциональности Интегральная постоянная		19999 [ед. изм.] 065535
td.ti	Отношение дифференциальной		003
14.11	постоянной к интегральной		00.3
i.UPr	Ограничение максимума интеграла		-100100 [ед. изм.]
i.min	Ограничение минимума интеграла		-100100 [ед. изм.]
P.nom	Номинальная мощность		-100100 [ед. изм.]
	рр №\Автонастройка	l	
Y0	Уставка автонастройки		-99999999 [ед. изм.]
YdoP	Максимально допустимое		0999 [ед. изм.]
	отклонение регулируемой		[
	величины		
	•	•	•

Продолжение таблицы В.1

Прод	должение таблицы В.1	1		
	Название	Допустимые значения		
РМИ		Симв. на ЦИ2	Значения (в Конфигураторе)	
t.vAL	Время полного хода 3-х		0:01999 [ед. изм.]	
	позиционного ИМ			
	ТРЫ УСТАВОК			
Уставки	регулятора № \ Уставки в программ	ие № \ Уст	гавка на шаге №	
LF.LU	Скорость выхода на уставку		09999 [ед. изм./мин]	
PSP	Тип уставки	uЯL	Значение	
		Po	Мощность	
b.CH.L	Нижняя граница задания уставки		-99999999 [ед. изм.]	
b.CH.H	Верхняя граница задания уставки		-99999999 [ед. изм.]	
SP.LU	Значение уставки		-99999999 [ед. изм.]	
	ТРЫ ОГРАНИЧЕНИЯ ВЫХОДНОЙ МО	ЩНОСТИ		
	ятора №			
P.rES	Максимальная скорость изменения		0100 [%/мин]	
	выходной мощности			
P.UPr	Максимальная выходная мощность		-100100 [%]	
P.min	Минимальная выходная мощность		-100100 [%]	
ПАРАМЕ	ТРЫ БЛОКА УПРАВЛЕНИЯ ИСПОЛНИ	ИТЕЛЬНЫ М	ИИ МЕХАНИЗМАМИ	
db.F	Зона нечувствительности для задвижек	(%)	0.0510 [%]	
DLP	Наличие датчика положения		Нет	
	задвижек	no 4E5	Есть	
i.DP	Номер входа датчика положения	<u> </u>	– BXOД №1	
	Помер входа датчика положения	1	– BXOД №2	
t.StP	Мин. время остановки задвижки		0:0116:39 [мин]	
TP.L	Мин.время работы задвижки		0.110 [сек]	
Тр.Н	Полное время хода задвижки		0:1166:9 [мин]	
TFP	Время выборки люфта		0.110 [сек]	
LSP	Исходное положение задвижки в %		0100 [%]	
	Е ПАРАМЕТРЫ ПРИБОРА			
bPS	Скорость обмена данными		2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200 [кбит/с]	
LEn	Длина слова данных		7 или 8 [бит]	
PrtY	Контроль четности	no	Отсутствует	
	· ·	EuEn	Четность	
		odd	Нечетность	
Sbit	Количество стоп-бит в посылке		1 или 2	
A.LEn	Длина сетевого адреса		8 или 11 [бит]	
Addr	Базовый адрес прибора		02047	
rS.dL	Время задержки ответа прибора		050 [мс]	
	НЫЕ ПАРАМЕТРЫ ПРИБОРА	•	·	
behv	Реакция на случайное отключение	гЦп	Возврат в тот же режим	
	питания	P 1.5 1	Старт Прогр. 1 Шаг1	
1		5toP	Переход в «СТОП»	
1		FRCL	Переход в «АВАРИЯ»	

Приложение В. Перечень программируемых параметров

Окончание таблицы В.1

			Допустимые значения
РМИ	Название	Симв. на ЦИ2	Значения (в Конфигураторе)
doG	Количество сбросов по watchdog		09999
220	Количество случайных отключений питания		09999
rES	Общее количество сбросов		09999
r.SrC	Причина последнего пересброса		Ручной (внешний) перезапуск Отключилось питание Самопроизвольный watchdog
bL.rU	Ручное управление	<u> </u>	Разрешено Запрещено

Приложение Г. Некоторые типы первичных преобразователей

Г.1 Термопреобразователи сопротивления

Термопреобразователи сопротивления применяются для измерения температуры окружающей среды в месте установки датчика. Принцип действия таких датчиков основан на существовании у ряда металлов воспроизводимой и стабильной зависимости активного сопротивления от температуры. В качестве материала для изготовления ТС в промышленности чаще всего используется специально обработанная медная (для датчиков ТСМ) или платиновая (для датчиков ТСП) проволока.

Выходные параметры TC определяются их номинальными статическими характеристиками, стандартизованными ГОСТ Р 50353-92. Основными параметрами НСХ являются: начальное сопротивление датчика R₀, измеренное при температуре 0°C, и температурный коэффициент сопротивления W_{100} определяемый как сопротивления датчика, измеренного при температуре 100 °C, к его сопротивлению, измеренному при 0 °C. В связи с тем, что HCX термопреобразователей сопротивления функции нелинейные (для ТСМ в области отрицательных температур, а для ТСП во всем диапазоне), в приборе предусмотрены средства для линеаризации показаний.

Во избежание влияния сопротивлений соединительных проводов на результаты измерения температуры, подключение датчика к прибору следует производить по трехпроводной схеме. При такой схеме к одному из выводов ТС подключаются одновременно два провода, соединяющих его с прибором, а к другому выводу – третий соединительный провод (см. рисунок Г.1). Для полной компенсации влияния соединительных проводов на результаты измерений необходимо, чтобы их сопротивления были равны друг другу (достаточно использовать одинаковые провода равной длины). В случаях возникает необходимость TC трехпроводной, подключения не ПО двухпроводной схеме, например, с целью использования уже имеющихся на объекте линий связи.

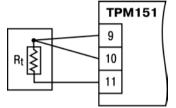


Рисунок Г.1 – Подключение TC по трехпроводной схеме

Такая схема соединения также может быть реализована, но при условии обязательного выполнения работ по Приложению Д.

Г.2 Термоэлектрические преобразователи (термопары)

Термоэлектрические преобразователи (термопары) ТП так же, как и термопреобразователи сопротивления, применяются для измерения температуры. Принцип действия термопар основан на эффекте Зеебека, в соответствии с которым нагревание точки соединения двух разнородных проводников вызывает на противоположных концах этой цепи возникновение электродвижущей силы — термоЭДС. Величина термоЭДС изначально определяется химическим составом проводников и, кроме этого, зависит от температуры нагрева.

HCX термопар различных типов стандартизованы по ГОСТ Р 8.585-2001. Так как характеристики всех термопар в той или иной степени являются нелинейными функциями, в приборе предусмотрены средства для линеаризации показаний.

Точка соединения разнородных проводников называется **рабочим спаем** термопары, а их концы — **свободными концами** или иногда «холодным спаем». Рабочий спай термопары располагается в месте, выбранном для контроля температуры, а свободные концы подключаются к измерительному прибору.

Еспи подключение свободных концов TPM151 непосредственно контактам К представляется возможным (например, из-за их удаленности друг от друга), то соединение термопары с прибором необходимо выполнять при компенсационных помощи термоэлектродных проводов или кабелей. обязательным соблюдением полярности включения. ИΧ применения Необходимость таких проводов обусловлена тем, что ЭДС термопары зависит не только от температуры рабочего спая, но и от температуры ее свободных концов, величину контролирует специальный которой датчик, расположенный в приборе.

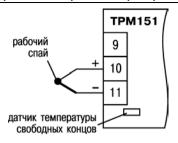


Рисунок Г.2 – Подключение термопары

При этом использование термоэлектродных кабелей позволяет увеличить длину проводников термопары и «перенести» ее свободные концы к клеммнику TPM151.

Пример схемы подключения ТП к входу 1 прибора представлен на рисунке Г.2.

Внимание! Для работы с прибором могут быть использованы только термопары с изолированными и незаземленными рабочими спаями, так как отрицательные выводы их свободных концов объединены между собой на входе в TPM151.

Приложение Д. Подключение термопреобразователей сопротивления по двухпроводной схеме

Д.1. Как указывалось ранее, применяемые в качестве датчиков термопреобразователи сопротивления должны соединяться с входами TPM151-10 по трехпроводной схеме, использование которой нейтрализует влияние сопротивления соединительных проводов на результаты измерения. Однако в технически обоснованных случаях (например, когда установка прибора производится на объектах, оборудованных ранее проложенными монтажными трассами) такое соединение может быть выполнено и по двухпроводной схеме.

При использовании двухпроводной схемы следует помнить, что показания прибора в некоторой степени будут зависеть от изменения температуры среды, окружающей линию связи «датчик-прибор».

Пример подключения термопреобразователя сопротивления к контактам «Вход 1» приведен на рисунке Д.1.

При использовании двухпроводной схемы перед началом эксплуатации прибора необходимо выполнить действия, указанные в п. Д.2...Д.8.

- Д.2 Произвести подключение датчика по двухпроводной схеме к соответствующему входу прибора, аналогично тому, как это указано в примере на рис. Д.1.
- Д.3 Подключить к линии связи «датчик-прибор» (к противоположным от прибора концам линии) вместо термопреобразователя магазин сопротивления типа P4831 (или подобный ему с классом точности не хуже 0,05).
- Д.4 Установить на магазине значение, равное сопротивлению термопреобразователя при температуре 0 °C (50,000 или 100,000 Ом в зависимости от типа применяемого датчика).

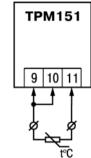
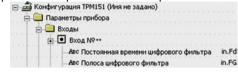


Рисунок Д.1 – Подключение термопреобразователя сопротивления по двухпроводной схеме ко Входу 1

- Д.5. Включить питание прибора и на соответствующем канале по показаниям индикатора ЦИ1 зафиксировать величину отклонения температуры от значения 0,0 °C. Полученное отклонение всегда должно иметь положительное значение, а величина его будет зависеть от сопротивления линии связи «датчик–прибор».
- Д.6. Установить для данного датчика параметром Сдвиг характеристики **in.SH** коэффициент коррекции, равный значению, зафиксированному при выполнении работ по п. Д.5 (отклонение показаний ЦИ1 от 0.0 °C), но взятому с противоположным знаком, т. е. со знаком «минус».
 - **Пример** После подключения к входу второго канала термопреобразователя сопротивления по двухпроводной схеме и выполнения работ по п. Д.5 на индикаторе ЦИ1 зафиксированы показания 12,6 °C. Для компенсации сопротивления линии связи значение программируемого параметра **in.SH** датчика третьего канала следует установить равным –012,6.
- Д.7. Проверить правильность задания коррекции, для чего, не изменяя сопротивления на магазине, перевести прибор в режим РАБОТА и убедиться, что показания на соответствующем канале индикатора ЦИ1 равны 0 °C (с абсолютной погрешностью не хуже 0,2 °C).
- Д.8. Отключить питание прибора. Отсоединить линию связи «датчик–прибор» от магазина сопротивления и подключить ее к термопреобразователю.
- Д.9. Если ко второму входу прибора также необходимо подсоединить термопреобразователь сопротивления по двухпроводной схеме, выполните п. Д.2–Д.8 для входа 2.

Приложение Е. Цифровая фильтрация и коррекция измерений


Е.1 Цифровая фильтрация измерений

Е.1.1 Для ослабления влияния внешних импульсных помех на эксплуатационные характеристики прибора в программу его работы введена цифровая фильтрация результатов измерений.

Фильтрация осуществляется независимо для каждого Входа и проводится в два этапа.

Е.1.2 На первом этапе фильтрации из текущих измерений входных параметров отфильтровываются значения, имеющие явно выраженные «провалы» или «выбросы».

Для этого прибор вычисляет разность между результатами измерений входной величины, выполненных в двух последних циклах опроса, и сравнивает ее с заданным значением, называемым Полосой фильтра. Если вычисленная разность превышает

заданный предел, то производится повторное измерение. В случае помехи этот факт подтвердится повторным измерением и ложное измерение аннулируется. Такой алгоритм позволяет защитить прибор от воздействия единичных импульсных и коммутационных помех, возникающих на производстве при работе силового оборудования.

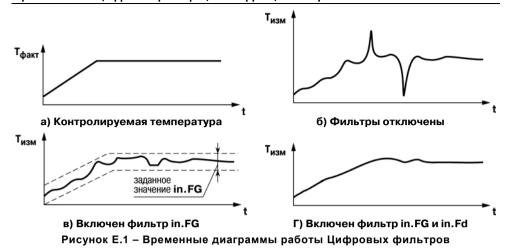
Полоса фильтра задается в единицах измеряемой величины параметром in.FG для каждого Входа.

Следует иметь в виду, что чем больше значение Полосы фильтра, тем лучше помехозащищенность измерительного канала, но при этом (из-за возможных повторных измерений) хуже реакция прибора на быстрое фактическое изменение входного параметра. Поэтому при задании Полосы фильтра следует учитывать максимальную скорость изменения контролируемой величины, а также установленную для данного Датчика периодичность опроса.

При необходимости данный фильтр может быть отключен установкой нулевого значения параметра in.FG.

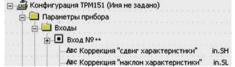
Е.1.3 На втором этапе фильтрации

осуществляется сглаживание (демпфирование) сигнала с целью устранения шумовых составляющих.


Основной характеристикой сглаживающего фильтра является Постоянная времени фильтра – интервал, в течение которого сигнал достигает 0,63 от значения каждого измерения.

Постоянная времени фильтра задается в секундах параметром in.FD для каждого Входа.

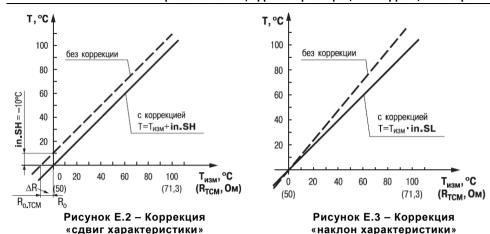
Следует помнить, что увеличение значения Постоянной времени фильтра улучшает помехозащищенность канала измерения, но одновременно увеличивает его инерционность, т. е. реакция прибора на быстрые изменения входной величины замедляется.


При необходимости данный фильтр может быть отключен установкой нулевого значения параметра **in.FD**.

Временные диаграммы работы цифровых фильтров представлены на рисунке Е.1.

Е.2 Коррекция измерительной характеристики датчиков

- Е.2.1 Для устранения начальной погрешности преобразования входных сигналов и погрешностей, вносимых соединительными проводами, измеренные и отфильтрованные прибором значения могут быть откорректированы.
- В ТРМ151 для каждого Входа есть два типа коррекции, с помощью которых можно осуществлять сдвиг и изменение наклона измерительной характеристики.
- Е.2.2 Сдвиг характеристики осуществляется путем прибавления к измеренной величине значения, заданного параметром in.SH для данного Входа. Значение Сдвига характеристики датчика задается в



единицах измерения физической величины и служит для устранения влияния начальной погрешности первичного преобразователя (например, значения R_0 у термопреобразователей сопротивления).

Примечание – При работе с платиновыми термопреобразователями сопротивления на заданное в параметре **in.SH** значение сдвига накладывается также коррекция нелинейности HCX датчика, заложенная в программе обработки измерений.

Пример сдвига измерительной характеристики графически представлен на рисунке Е.2.

E.2.2 Изменение наклона характеристики осуществляется путем умножения измеренной величины на поправочный коэффициент α , значение которого задается для каждого Датчика параметром **in.SL**. Данный вид коррекции может быть использован для компенсации погрешностей самих Датчиков (например, при отклонении у термопреобразователей сопротивления параметра W_{100} от стандартного значения) или погрешностей, связанных с разбросом сопротивлений шунтирующих резисторов (при работе с преобразователями, выходным сигналом которых является ток).

Значение поправочного коэффициента α задается в безразмерных единицах в диапазоне 0,900...1,100 и перед установкой может быть определено по формуле:

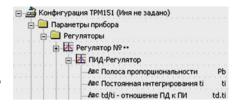
$$\alpha = \Pi_{\text{makt}} : \Pi_{\text{M3M}}$$

где α – значение поправочного коэффициента, устанавливаемого параметром in.SL;

 $\Pi_{\text{факт}}$ – фактическое значение контролируемой входной величины;

П_{изм} – измеренное прибором значение той же величины.

Пример изменения наклона измерительной характеристики графически представлен на рисунке Е.З.


Определить необходимость введения поправочного коэффициента можно, измерив максимальное или близкое к нему значение параметра, где отклонение наклона измерительной характеристики наиболее заметно.

Внимание! Задание корректирующих значений, отличающихся от заводских установок (in.SH = 000.0 и in.SL = 1.000), изменяет стандартные метрологические характеристики TPM151 и должно производиться только в технически обоснованных случаях квалифицированными специалистами.

Приложение Ж. ПИД-регулятор и параметры его настройки

Ж.1 Общие принципы ПИДрегулирования. Параметры ПИДрегулятора

Ж.1.1 ПИД-регулятор и его коэффициенты

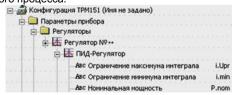
ПИД-регулятор (пропорционально-интегрально-дифференциальный регулятор) выдает аналоговое значение выходного сигнала, направленное на уменьшение отклонения текущего значения контролируемой величины от Уставки.

Выходной сигнал ПИД-регулятора Y рассчитывается по формуле:

$$Y_i = \frac{1}{X_p} \cdot \left[E_i + \tau_{\mathrm{I\!I}} \cdot \frac{\Delta E_i}{\Delta t_{\mathrm{M3M}}} \right. \\ \left. + \frac{1}{\tau_{\mathrm{I\!I}}} \sum_{i=0}^n E_i \, \Delta t_{\mathrm{M3M}} \right]$$

где X_p — полоса пропорциональности; E_i — разность между Уставкой и текущим значением T_i контролируемой величины, или рассогласование; $\tau_{\text{д}}$ — дифференциальная постоянная; ΔE_i — разность между двумя соседними измерениями E_i и E_{i-1} ; $\Delta t_{\text{изм}}$ — время между двумя соседними измерениями T_i и T_{i-1} ; $\tau_{\text{И}}$ — интегральная постоянная; $\sum_{i=0}^{N} E_i$ — накопленная в i-й момент времени сумма рассогласований (интегральная сумма).

Как видно из формулы, сигнал управления является суммой трех составляющих:


- пропорциональной (1-е слагаемое):
- интегральной (3-е слагаемое);
- дифференциальной (2-е слагаемое).

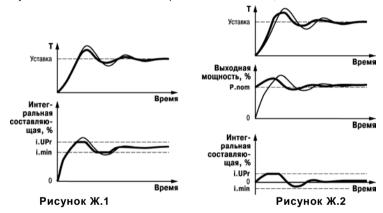
Пропорциональная составляющая зависит от рассогласования E_i, и отвечает за реакцию на мгновенную ошибку регулирования.

Интегральная составляющая содержит в себе накопленную ошибку регулирования $\sum_{i=0}^{N} \mathsf{E}_i \Delta t_{\mathsf{изм}}$ и позволяет добиться максимальной скорости достижения уставки.

Дифференциальная составляющая зависит от скорости изменения рассогласования $\Delta E/\Delta t_{\text{изм}}$ и позволяет улучшить качество переходного процесса.

Для эффективной работы ПИД-регулятора необходимо подобрать для конкретного объекта регулирования значения коэффициентов ПИД-регулятора X_p , $\tau_{\text{И}}$ и $\tau_{\text{Д}}$ (соответственно, параметры Pb, ti и td.ti, последний задается как отношение $\tau_{\text{Д}}/\tau_{\text{И}}$).

Настройку ПИД-регулятора рекомендуется выполнять в автоматическом режиме (см. п. 12.6). При настройке вручную Вы можете определить приблизительные значения параметров ПИД-регулятора по Приложению Ж.2.


Ж.1.2 Номинальная выходная мощность. Ограничение накопления интегральной составляющей

Поведение объекта при классическом ПИД-регулировании представлено на рисунке Ж.1, тонкая линия.

Как видно, при длительном выходе на уставку ПИД-регулятор производит «перерегулирование» объекта. «Перерегулирование» связано с тем, что в процессе выхода на уставку накопилось очень большое значение интегральной составляющей в выходном сигнале регулятора (мощности).

После «перерегулирования» начинается уменьшение значения интегральной составляющей, что, в свою очередь, приводит к провалу ниже уставки — «недорегулированию». Только после одного-двух таких колебаний ПИД-регулятор выходит на требуемое значение мощности.

Во избежание «перерегулирования» и «недорегулирования» необходимо ограничить сверху и снизу значение накопленной интегральной составляющей.

Пример - Имеется печь, для которой из опыта известно, что для поддержания определенной уставки требуется мощность от 50 % до 70 %. Разброс мощности в 20 % вызван изменениями внешних условий, например температуры наружного воздуха. Тогда, вводя ограничение интегральной составляющей, т. е. задав параметры **i.min** = 50 % и = 70 %, мы можем уменьшить «перерегулирование» и «недорегулирование» в системе (см. рисунок Ж.1, толстая линия).

Важно! Следует понимать, что ограничения параметров **i.min** и **i.UPr** распространяются только на интегральную составляющую. Конечное значение выходной мощности, полученное как сумма пропорциональной, дифференциальной и интегральной составляющих, может лежать вне пределов, заданных **i.min** и **i.UPr**. Ограничение конечного значения выходной мощности в системе задается параметрами **P.min** и **P.UPr** (см. п. 3.5.3).

Для уменьшения колебаний при переходных процессах можно также задать номинальную мощность. Номинальная мощность — это средняя мощность, которую надо подать в объект регулирования для достижения требуемой уставки. В нашем примере номинальную мощность **P.nom** нужно задать равной 60 %. Тогда при работе к значению выходной мощности, рассчитанной ПИД-регулятором, будет прибавляться номинальная мощность. При задании номинальной мощности параметры ограничения интеграла необходимо задать от значения

P.nom. В нашем примере для достижения значения интегральной составляющей от 50 % до 70 % и при **P.nom** = 60 % необходимо задать **i.min** = -10 %, а **i.UPr** = +10 %.

Работа системы с заданной номинальной мощностью и ограничениями интегральной составляющей показана на рисунке Ж.2. Как видно из рисунка, переходный процесс протекает несколько быстрее, т. к. значение выходной мощности сразу начинает расти от **P.nom**, а не от нулевого значения. Также задание **P.nom** необходимо при использовании ПД-регулятора.

Ж.2 Определение параметров предварительной настройки регулятора

Приведенный ниже метод позволяет определить приблизительные параметры настройки регулятора для обеспечения возможности последующего применения **Точной автонастройки**. Это бывает необходимо в случае, если проведение предварительной настройки в автоматическом режиме недопустимо.

Грубая оценка параметров регулятора основана на временных характеристиках переходной функции объекта регулирования. Для снятия переходной функции объект выводят в рабочую область в ручном режиме. дожидаются стабилизации регулируемой величины и вносят возмущение изменением vправляющего воздействия на ΔP. [% от диапазона изменения **управляющего** воздействия]. Строят график переходной функции (см. рисунок Ж.3).

Используя график, вычислить:

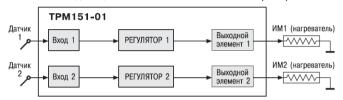
$$\begin{split} t_{o6} &= t_1 - \tau, \\ V_{ob} &= (T_2 - T_1)/(t_{o6} \times \Delta P), \\ \tau_i &= 4\tau, \\ X_p &= 2 \times \tau \times v_{ob}, \end{split}$$

где:

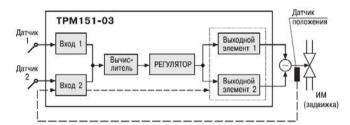
X_p	-	полоса пропорциональности, [ед. изм./%];
τ	_	постоянная запаздывания, [с];
t _{oб}	_	постоянная времени объекта, [с];
V_{ob}	_	максимальная скорость изменения регулируемой величины
		при изменении задания на один процент, [ед. изм./%/с];
τ_{i}	_	интегральная постоянная, [c];
T_2	_	установившееся значение регулируемой величины, [ед. изм.];
T_1	_	начальное значение, [ед. изм.];
ΛР	_	изменение управляющего воздействия. [%].

Коэффициент τ_n/τ_u (параметр td.ti), определяющий долю дифференциальной составляющей, выбирается из интервала [0,1...0,25].

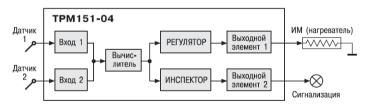
Конкретное значение $\tau_{\rm g}/\tau_{\rm u}$ задается с учетом реальных условий эксплуатации и характеристик используемых технических средств. Для того, чтобы определить оптимальное значение $\tau_{\rm g}/\tau_{\rm u}$, необходимо сопоставить работу системы в реальных условиях эксплуатации при двух-трех различных значениях $\tau_{\rm c}/\tau_{\rm u}$ (например, при $\tau_{\rm c}/\tau_{\rm u}$ = 0,1; 0,15 и 0,25).

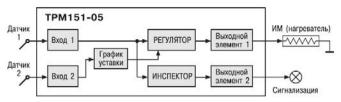

По умолчанию введено значение $\tau_{\rm u}/\tau_{\rm u} = 0.15$.

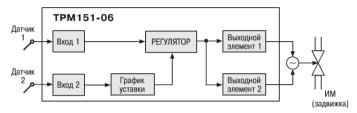
Приложение И. Краткое описание модификаций прибора ТРМ151

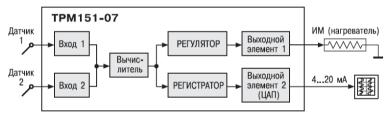

И.1 Прибор TPM151 выпускается в нескольких модификациях. Смена модификации прибора осуществляется с помощью программы «Конфигуратор TPM151» путем записи в прибор соответствующего файла (см. п. 10.7.2). При этом следует учитывать, что лицевые панели приборов разных модификаций могут отличаться.

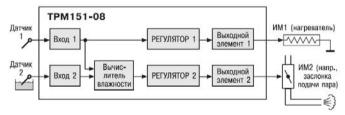
Кроме того, пользователь может создать заказную конфигурацию прибора TPM151, сочетающую в себе элементы разных модификаций. Пользователь можете сделать это самостоятельно или воспользоваться услугами компании OBEH, обратившись по адресу trm151@owen.ru.


Перед созданием собственной модификации необходимо изучить описание базового прибора TPM151 на компакт-диске. поставляемом в комплекте с прибором.

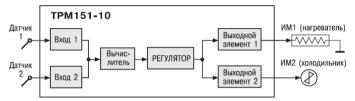

ТРМ 151-01. 2 Канала пошагового регулирования по измеренной величине, каждый Канал подключен к своему Выходному элементу. Регулятор может работать в режимах ПИД и ON/OFF.


ТРМ 151-03. Одноканальное пошаговое регулирование задвижкой с датчиком положения или без.


ТРМ 151-04. Одноканальное пошаговое регулирование по измеренной или вычисленной величине. Имеется блок контроля нахождения величины в допустимых границах (Инспектор). Сигнал от Инспектора подается на Выходной элемент 2, к которому подключается средство аварийной сигнализации (лампа, звонок и т. д.).


ТРМ 151-05. Одкоканальное пошаговое регулирование, при этом Уставка Регулятора может быть скорректирована по определенной функции от значения, измеренного на Входе 2. Имеется блок Инспектора, соединенный с ВЭ2.

ТРМ151-06. Одкоканальное пошаговое регулирование задвижкой без датчика положения. При этом Уставка Регулятора может быть скорректирована по определенной функции от значения, измеренного на Входе 2.


ТРМ 151-07. Одкоканальное пошаговое регулирование по измеренной или вычисленной величине. Эта величина дублируется на ЦАП 4...20 мА, к которому подключается аналоговый регистратор.

ТРМ 151-08. Одновременное пошаговое регулирование температуры и влажности. Вычисление влажности производится психрометрическим методом по температуре «сухого» и «влажного» термометров.

ТРМ 151-09. Одноканальное пошаговое регулирование по измеренной или вычисленной величине. На второй выход прибора можно на определенном шаге программы подать периодические импульсы для включения дополнительного оборудования или сигнализации о ходе технологического процесса.

ТРМ 151-10. Одноканальное пошаговое регулирование с помощью системы «нагреватель - холодильник- по измеренной или вычисленной величине.

Лист регистрации изменений

Лист регистрации изменений No Номера листов (стр.) Всего Лата							
№ изменения	Номера листов (стр.)				Всего	Дата	
	измен.	заменен.	новых	аннулир.	листов (стр.)	внесения	Подпись
					-		
					-		
						-	
					l		

Центральный офис:

111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

Тел.: (495) 221-60-64 (многоканальный) Факс: (495) 728-41-45

www.owen.ru

Отдел сбыта: sales@owen.ru Группа тех. поддержки: support@owen.ru

Рег. № 1758 Зак. №