

MK210-301/311

Модуль ввода-вывода

EHE

Руководство по эксплуатации

Содержание

Указания по безопасному применению	
Введение	4
Используемые аббревиатуры	5
1 Назначение	
2 Технические характеристики и условия эксплуатации	
2.1 Технические характеристики и условии эксплуатации	
2.2 Изоляция узлов прибора	8
2.3 Условия эксплуатации	8
3 Меры безопасности	
4 Монтаж	
5 Подключение	
5.1 Рекомендации по подключению	
5.2 Назначение контактов клеммника	
5.3 Назначение разъемов	
5.4 Питание	
5.5 Подключение к дискретным входам датчиков типа «сухой контакт»	
5.6 Подключение к выходам	15
5.7 Подключение по интерфейсу Ethernet	15
6 Устройство и принцип работы	17
6.1 Принцип работы	
6.2 Индикация и управление	17
6.3 Часы реального времени	
6.4 Запись архива	
6.5 Режимы обмена данными	
6.5.1 Обмен по протоколу Modbus TCP	
6.6 Ограничение обмена данными при работе с облачным сервисом	
6.7 Режимы работы входов типа «сухой контакт»	
6.8 Режимы работы дискретных выходов	
6.9 Безопасное состояние выходных элементов	
6.10 Контроль обрыва нагрузки	
7 Настройка	24
7.1 Подключение к Универсальному конфигуратору	24
7.2 Подключение к облачному сервису OwenCloud	
7.3 Пастройка сетевых параметров	
7.5 Обновление встроенного программного обеспечения	
7.6 Восстановление заводских настроек	
7.7 Настройка часов реального времени	
7.8 Принудительное обнуление счетчика	
8 Техническое обслуживание	
8.1 Общие указания	28
8.2 Замена батареи	
9 Комплектность	
10 Маркировка	
11 Упаковка	
12 Транспортирование и хранение	
13 Гарантийные обязательства	34

Указания по безопасному применению

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о **непосредственной угрозе опасной ситуации**, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

|ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Введение

Настоящее Руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, конструкцией, работой и техническим обслуживанием модулей вводавывода МК210-301 и МК210-311 (в дальнейшем по тексту именуемого «прибор» или «модуль»).

Подключение, регулировка и техобслуживание прибора должны производиться только квалифицированными специалистами после прочтения настоящего руководства по эксплуатации.

Обозначение приборов при заказе: МК210-301 и МК210-311.

Используемые аббревиатуры

ПК – персональный компьютер.

ПЛК – программируемый логический контроллер.

ШИМ – широтно-импульсная модуляция.

RTC – часы реального времени.

UTC – всемирное координированное время.

1 Назначение

Модули ввода-вывода МК210-301 и МК210-311 предназначены для сбора данных и подключения исполнительных устройств на объектах автоматизации. Прибор управляется с помощью ПЛК, панельного контроллера, ПК или другого управляющего устройства.

Прибор имеет:

- 6 дискретных входов типа «сухой контакт»;
- 8 дискретных выходов (реле).

В модуле МК210-311 дискретные выходы имеют функцию контроля обрыва нагрузки и срабатывания реле.

Модули применяются в различных областях промышленности и сельского хозяйства.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Технические характеристики

Характеристика	Значение				
Питание					
Напряжение питания	от 10 до 48 В (номинальное 24 В)				
Потребляемая мощность:					
24 B	Не более 6 Вт				
Защита от переполюсовки напряжения питания	Есть				
	исы связи				
Интерфейс обмена	Сдвоенный Ethernet 10/100 Mbps				
Интерфейс конфигурирования	USB 2.0 (MicroUSB), Ethernet 10/100 Mbps				
Протокол обмена	Modbus TCP				
Версия протокола	IPv4				
	ые входы				
Количество входов	6				
Тип сигнала	• «Сухой контакт»				
	• Транзисторный ключ n-p-n типа				
Режим работы	Определение логического уровня				
Минимальная длительность единичного импульса	1 мс (до 400 Гц)				
Сопротивление контактов (ключа) и соединительных проводов, подключаемых к дискретному входу	не более 100 Ом				
Дискретнь	іе выходы				
Количество выходов	8				
Тип выхода	Электромагнитное реле				
Тип контакта	Нормально разомкнутый контакт				
Режимы работы: • Переключение логического состояния • Генерация ШИМ сигнала					
Максимальное напряжение на контакты реле	250 D Topostolijos uospayvolija				
·	• 250 В переменного напряжения,				
-	• 30 В постоянного напряжения				
Ток коммутации	• 5 А (при напряжении не более 250 В, 50 Гц и соsφ > 0,4);				
	• 3 А (при постоянном напряжении не более 30 В)				
Время включения	15 мс				
Время выключения	15 мс				
Механический ресурс реле	не менее 5000000 переключений				
Электрический ресурс реле при максимальном токе нагрузки	не менее 50 000 переключений				
Контроль обрыва нагрузки	Только для МК210–311				
Параметры Ц	ЈИМ выходов				
Максимальная частота	1 Гц (при скважности 0,5)				
Минимальная длительность импульса ШИМ	50 мс				
Flash-память (архив)					
Максимальный размер файла архива	2 кб				

Продолжение таблицы 2.1

Характеристика	Значение		
Максимальное количество файлов архива	1000		
Минимальный период записи архива	1 c		
Часы реа	льного времени		
Погрешность хода:			
при температуре +25 °C; при температуре минус 40 °C	не более 1 секунды в сутки не более 3 секунд в сутки		
Тип питания	батарея СR2032		
Средний срок работы на одной батарее	6 лет		
Общие х	карактеристики		
Габаритные размеры	123 × 83 × 42 мм		
Степень защиты корпуса	IP20		
Средний срок службы	10 лет		
Macca	не более 0,4 кг		

2.2 Изоляция узлов прибора

Схема гальванически изолированных узлов и прочность гальванической изоляции приведены на рисунке 2.1.

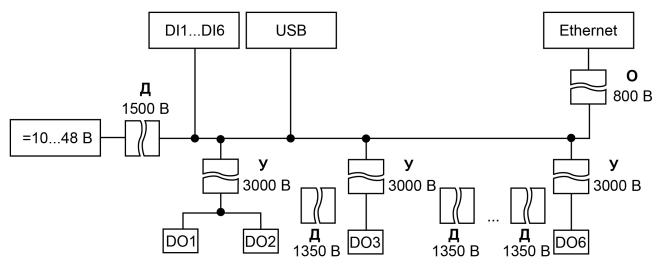


Рисунок 2.1 – Изоляция узлов прибора

ПРЕДУПРЕЖДЕНИЕ

Значение прочности изоляции указано для испытаний при нормальных климатических условиях (время воздействия - 1 минута).

Дискретные выходы (реле) гальванически изолированы друг от друга (кроме выходов 1 и 2, которые связаны с одной клеммой). Прочность изоляции — 1780 В.

2.3 Условия эксплуатации

Модуль отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ 30804.6.4-2013. По уровню излучения радиопомех (помехоэмиссии) прибор соответствует нормам, установленным для оборудования класса А по ГОСТ Р 51318.22 (СИСПР 22–97). Прибор предназначен для эксплуатации в следующих условиях:

- температура окружающего воздуха от минус 40 до +55 °C;
- относительная влажность воздуха от 10 % до 95 % (при +35 °C без конденсации влаги);
- атмосферное давление от 84 до 106,7 кПа;
- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- допустимая степень загрязнения 1 по ГОСТ IEC 61131–2.

По устойчивости к механическим воздействиям при эксплуатации прибор соответствует ГОСТ IEC 61131-2-2012.

По устойчивости к климатическим воздействиям при эксплуатации прибор соответствует ГОСТ IEC 61131-2-2012.

3 Меры безопасности

На клеммнике присутствует опасное для жизни напряжение. Любые подключения к прибору и работы по его техническому обслуживанию следует производить только при отключенном питании прибора.

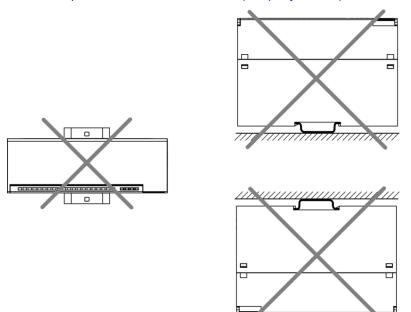
По способу защиты от поражения электрическим током прибор соответствует классу II по ГОСТ IEC 61131-2-2012.

При эксплуатации и техническом обслуживании необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».

Установку прибора следует производить в специализированных шкафах, доступ внутрь которых разрешен только квалифицированным специалистам. Любые подключения к Mx210 и работы по его техническому обслуживанию производить только при отключенном питании прибора и подключенных к нему устройств.

Модуль соответствует требованиям нормативных документов Ростехнадзора: ПБ 10-574- 03, ПБ 10-573-03, ПБ 10-575-03. Не допускается попадание влаги на контакты выходных разъемов и внутренние элементы модуля.

ВНИМАНИЕ


Запрещено использовать прибор в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.

4 Монтаж

Прибор устанавливается в шкафу электрооборудования. Конструкция шкафа должна обеспечивать защиту прибора от попадания влаги, грязи и посторонних предметов.

Для установки прибора следует выполнить действия:

- 1. Убедиться в наличии свободного пространства для подключения прибора и прокладки проводов.
- 2. Закрепить прибор на DIN-рейке или на вертикальной поверхности с помощью винтов (см. рисунок 4.1).

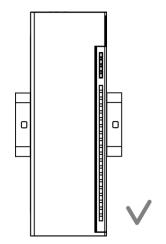


Рисунок 4.1 - Верный монтаж

Рисунок 4.2 – Неверный монтаж

Â

ВНИМАНИЕ

Во время монтажа необходимо наличие свободного пространства 50 мм над модулем и под ним.

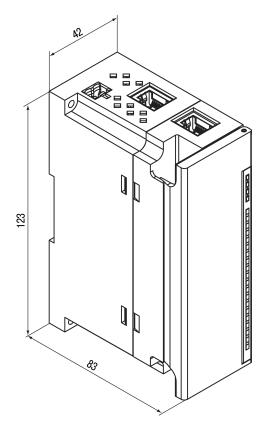


Рисунок 4.3 – Габаритный чертеж

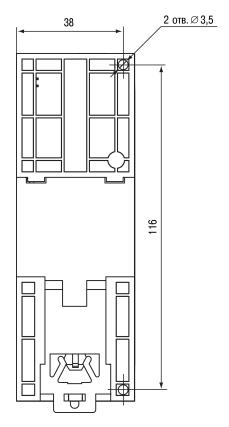


Рисунок 4.4 – Установочные размеры

5 Подключение

5.1 Рекомендации по подключению

Монтаж внешних связей осуществляется проводом сечением не более 0,75 мм².

Для многожильных проводов следует использовать наконечники.

После монтажа следует уложить провода в кабельном канале корпуса модуля и закрыть крышкой.

В случае необходимости следует снять клеммники модуля, открутив два винта по углам клеммников.

Монтаж проводов питания следует производить с помощью ответного клеммника из комплекта поставки.

ВНИМАНИЕ

Подключение и техническое обслуживание производится только при отключенном питании модуля и подключенных к нему устройств.

ВНИМАНИЕ

∆ |Запрещается подключать провода разного сечения к одной клемме.

ВНИМАНИЕ

Запрещается подключать более двух проводов к одной клемме.

5.2 Назначение контактов клеммника

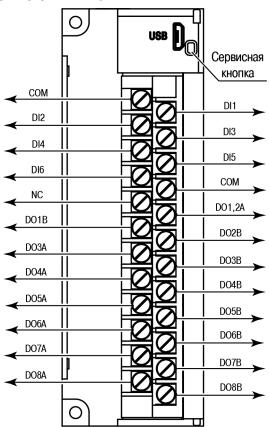


Рисунок 5.1 – Назначение контактов клеммника

Таблица 5.1 - Назначение контактов

Наименование	Назначение
DI1-DI6	Входы DI1-DI6
COM	Общая точка питания входов
DO1A, DO1B-DO8A, DO8B	Выходы DO1-DO8
NC (Not connected)	Нет подключения

ПРЕДУПРЕЖДЕНИЕ

У выходов 1 и 2 общий контакт А.

5.3 Назначение разъемов

Разъемы интерфейсов и питания прибора приведены на рисунке 5.2.

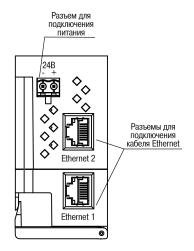


Рисунок 5.2 – Разъемы прибора

5.4 Питание

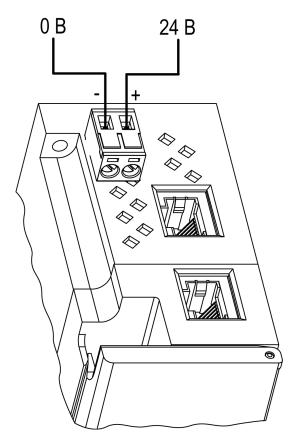


Рисунок 5.3 - Назначение контактов питания

Использование источников питания без потенциальной развязки или с базовой (основной) изоляцией цепей низкого напряжения от линий переменного тока может привести к появлению опасных напряжений в цепях.

5.5 Подключение к дискретным входам датчиков типа «сухой контакт»

К входам DI1 - DI6 можно подключать следующие датчики:

- «сухой контакт»;
- транзисторный ключ n-p-n типа.

Цепи СОМ объединены внутри прибора.

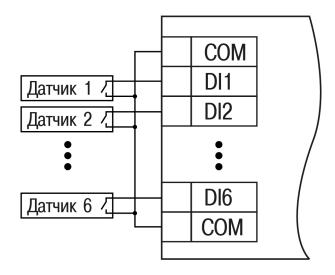


Рисунок 5.4 - Схема подключения к входам DI1-DI6

5.6 Подключение к выходам

На рисунке 5.5 представлена схема подключения к выходам типа «реле».

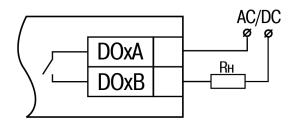


Рисунок 5.5 - Схема подключения внешних связей к дискретным выходам типа «реле»

5.7 Подключение по интерфейсу Ethernet

Для подключения модулей к сети Ethernet можно использовать следующие схемы:

- «Звезда» (рисунок 5.6),
- «Цепочка» / «Ďaisy-chain» (рисунок 5.7).

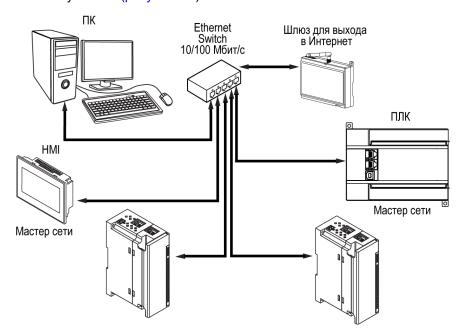


Рисунок 5.6 - Подключение по схеме «Звезда»

ПРЕДУПРЕЖДЕНИЕ

- 1. Максимальная длина линий связи 100 м.
- 2. Подключение возможно к любому порту Ethernet модуля.
- Незадействованный Ethernet-порт следует закрыть заглушкой.

Для подключения по схеме «Цепочка» следует использовать оба Ethernet-порта модуля. Если модуль вышел из строя или отключилось питание, то данные будут передаваться с порта 1 на порт 2 без разрыва связи.

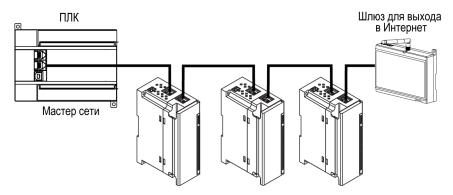


Рисунок 5.7 - Подключение по схеме «Цепочка»

ПРЕДУПРЕЖДЕНИЕ

- 1. Максимальная длина линии связи от мастера сети до последнего модуля при подключении «Цепочкой» должна быть не более 100 м для обеспечения сохранения связи между крайними устройствами при отключении питания промежуточных.
- 2. Допускается смежная схема подключения.
- 3. Незадействованный Ethernet-порт следует закрыть заглушкой.

6 Устройство и принцип работы

6.1 Принцип работы

Работой модуля управляет Мастер сети. Модуль передает в сеть данные о состоянии входов при запросе и получает команды на управление выходами от Мастера сети.

В качестве Мастера сети можно использовать:

- ПК;
- ПЛК;
- панель оператора;
- удаленный облачный сервис.

6.2 Индикация и управление

На лицевой панели МК210-301 и МК210-311 расположены элементы индикации — светодиоды. Расшифровка значений приведена в таблице 6.1.

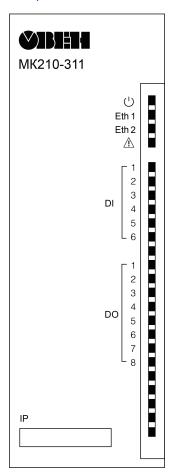


Рисунок 6.1 – Лицевая панель

В нижней части лицевой панели расположено поле «IP».

ПРЕДУПРЕЖДЕНИЕ

Поле «IP» предназначено для нанесения IP-адреса модуля тонким маркером или на бумажной наклейке.

Таблица 6.1 - Назначение светодиодов

Светодиод	Состояние светодиода	Назначение
Питание 🖰 (зеленый)	Светится	Напряжение питания прибора подано
Eth 1 (зеленый)	Мигает	Передача данных по порту 1 Ethernet
Eth 2 (зеленый)	Мигает	Передача данных по порту 2 Ethernet

Продолжение таблицы 6.1

Светодиод	Состояние светодиода	Назначение	
Авария 🛦 (красный)	Не светится	Сбои отсутствуют	
	Светится постоянно	Сбой основного приложения и/ или конфигурации	
	Включается на 200 мс один раз в три секунды	Необходимо заменить батарею питания часов	
	Включается на 100 мс два раза в секунду (через паузу 400 мс)	Модуль находится в безопасном состоянии	
	Включен 900 мс, 100 мс выключен	Аппаратный сбой периферии (Flash, RTC, Ethernet Switch)	
Индикаторы состояния входов	Светится зеленым	Вход замкнут	
(зеленые)	Не светится	Вход разомкнут	
Индикаторы состояния выходов	Светится зеленым	Выход замкнут	
(красно-зеленые)	Не светится	Выход разомкнут	
	Светится красным (для выходов модуля МК210–311)	Авария (обрыв нагрузки, спекание контактов, и др.)	

Под крышкой модуля расположены клеммники и сервисная кнопка (рисунок 5.1).

Сервисная кнопка выполняет следующие функции:

- восстановление заводских настроек (раздел 7.6);
- установку ІР-адреса (раздел 7.3);
- обновление встроенного программного обеспечения (раздел 7.5).

6.3 Часы реального времени

В модуле есть встроенные часы реального времени (RTC). Они работают от собственного батарейного источника питания.

Отсчет времени производится по UTC в секундах, начиная с 00:00 01 января 2000 года. Значение RTC используется при записи в архив.

6.4 Запись архива

В модуль встроена FLASH память, размеченная под файловую систему с шифрованием файлов.

Алгоритм шифрования - Data Encryption Standard.

FLASH память предназначена для хранения файлов архива (состояния выходов модуля и др.). Запись в архив производится циклически. Если архив заполнен, то удаляется самый старый файл.

В архиве сохраняются следующие данные:

- значение счетчика импульсов на дискретных входах;
- состояние дискретных выходов;
- значение коэффициента заполнения ШИМ на дискретных выходах;
- контроль состояния диагностики реле и обрыва нагрузки (только для МК210-311);
- статус прибора (служебная информация для обращения в сервисный центр и в группу технической поддержки).

Запись в архив производится с периодом, заданным пользователем.

Файл в формате CSV, Win1251, используется разделитель «;».

Файл содержит записи следующего формата:

- время в секундах с 2000 г. (UTC) (hex);
- идентификатор параметра, равный номеру соответствующего регистра Modbus (hex);
- значение (hex);
- статус параметра в архиве (0 значение параметра корректно, 1 значение параметра некорректно и его дальнейшая обработка не рекомендована).

Пример

(4 байта времени в секундах); 005А; 8А554433;0

Значение попадает в файл, если параметр имеет атрибут «архивировать».

Файлы архива можно считать с помощью программы «Универсальный конфигуратор», облачного сервиса или другого ПО.

Прибор фиксирует время в архивных файлах по встроенным часам реального времени. Также можно задать часовой пояс, который будет считываться внешним ПО (например, OwenCloud).

Архив в приборе пишется с периодом, заданным пользователем. Запись во FLASH память происходит с определенной частотой, рассчитанной таким образом, чтобы ресурса FLASH памяти прибора хватило на срок не менее 10 лет работы.

ВНИМАНИЕ

При выключении питания модуля последняя запись в файле архива не сохраняется.

6.5 Режимы обмена данными

Модуль поддерживает следующие режимы обмена данными:

- обмен с Мастером по протоколу Modbus TCP (порт 502) до 4 одновременных соединений с разными Мастерами сети;
- соединение и обмен данными с ПК с помощью программы «Универсальный конфигуратор»;
- обмен с удаленным облачным сервисом (необходим доступ в Интернет).

6.5.1 Обмен по протоколу Modbus TCP

Таблица 6.2 – Чтение и запись параметров по протоколу Modbus TCP

Операция	Функция
Чтение	3 (0х03) или 4 (0х04)
Запись	6 (0х06) или 16 (0х10)

Список регистров Modbus можно получить следующими способами:

- считать с прибора с помощью программы «Универсальный конфигуратор» во вкладке «Параметры устройства»;
- посмотреть в таблице 6.3, таблице 6.4 и таблице 6.5.

Таблица 6.3 - Общие регистры оперативного обмена по протоколу Modbus

Название	Регистр	Размер/тип/описание
Название (имя) прибора для отображения пользователю (DEV)	0xF000	Символьная строка 32 до байт, кодировка Win1251
Версия встроенного ПО прибора для отображения пользователю (VER)	0xF010	Символьная строка 32 до байт, кодировка Win1251
Время	0xF080	4 байта, в секундах с 2000 г
Часовой пояс	0xF082	2 байта, signed short, смещение в минутах от Гринвича
Заводской номер прибора	0xF084	Символьная строка 32 байта, кодировка Win1251, используется 17 символов

Таблица 6.4 – Регистры обмена по протоколу ModBus

Параметр	Значение Значение по				Формат
	(ед. изм.)	умолчанию	DEC	HEX	данных
Состояние дискретных входов DI1-DI6, битовая маска	063	1	51	0x33	Unsigned 8
Включение фильтра антидребезга для входов DI1-DI6	0 — выключено 1 — включено	0	96 101	0x60 0x65	Unsigned 16
Значение счётчика	04294967295	_	160	0xA0	Unsigned 32
импульсов входа DI1			161	0xA1	
Значение счётчика импульсов входа DI2	04294967295	_	162	0xA2	Unsigned 32

Продолжение таблицы 6.4

Параметр	Значение			егистра	Формат
	(ед. изм.)	умолчанию	DEC HEX		данных
			163	0xA3	
•••		_			
Значение счётчика	04294967295	_	170	0xAA	Unsigned 32
импульсов входа DI6			171	0xAB	
Сброс значения счётчика импульсов DI1-DI6	0 — сбросить 1 — не сброшен	0	224	0xE0	Unsigned 16
D	0	0	229	0xE5 0x110	Unaigned 1C
Режим работы выходов DO1-DO8	0 – перекл. логич. сигнала 1 – ШИМ	U	272 279	0x110 0x117	Unsigned 16
Период ШИМ-генератора	100060000	1000	308	0x117	Unsigned 16
выходов DO1-DO8	(MC)	1000	315	0x135	Choightea 10
Коэф. заполнения ШИМ-	01000 (0,10%)	0	340	0x154	Unsigned 16
генератора выходов DO1- DO8	(0,1070)	·	347	 0x15B	- chaight a re
Диагностика исправности	0 – выкл.	0	436	0x13B	Unsigned 16
диагностика исправности реле и обрыва нагрузки DO1-DO8	1 — вкл.	O	430	0x1B4 0x1BB	Offsigned 10
(Только для МК210–311)					
Битовая маска состояния выходов DO1-DO8	0FF	_	468	0x1D4	Unsigned 16
Битовая маска установки состояния выходов DO1- DO8	0FF	_	470	0x1D6	Unsigned 16
Битовая маска состояния диагностики реле и обрыва нагрузки DO1-DO8 (Только для МК210–311)	0FF	_	472	0x1D8	Unsigned 16
Безопасное состояние выходов DO1-DO8	01000 (0,10%)	0	474 	0x1DA	Unsigned 16
выходов во г вос			481	0x1E1	
Таймаут перехода в безопасное состояние	060 (c)	30	700	2BC	Unsigned 8
Разрешение конфигурирования из удаленного облачного сервиса	0 – заблокировано 1 – разрешено	0	701	2BD	Unsigned 16
Управление и запись значений из удаленного облачного сервиса	0 – заблокировано 1 – разрешено	0	702	2BE	Unsigned 16
Доступ к регистрам Modbus из удаленного облачного сервиса	0 — полный запрет 1 — только чтение 2 — только запись 3 — полный доступ	0	703	2BF	Unsigned 16
Состояние батареи (напряжение)	03300 (мВ)		801	321	Unsigned 16
Период архивирования	010 (c)	3	900	384	Unsigned 16
Новое время	с 2000 г., с		61565 61566	F07D F07E	Date time 32
Записать новое время	0 – не записывать 1 – записать	0	61567	F07F	Unsigned 16

Продолжение таблицы 6.4

Параметр	Значение Значение по	Значение по	Адрес р	егистра	Формат
	(ед. изм.) умолчанию		DEC	HEX	данных
Время и дата (UTC)	с 2000 г., с		61568 61569	F080 F081	Date time 32
Часовой пояс	смещение в минутах от Гринвича	0	61570	F082	Signed 16
Статус прибора	_	_	61620	0xF0B4	Unsigned 32
Установить IP-адрес	_	_	20	0x14	Unsigned 32
Установить маску подсети	_	_	22	0x16	Unsigned 32
Установить ІР-адрес шлюза	_	_	24	0x18	Unsigned 32
Текущий ІР-адрес	_	192.168.1.99	26	0x1A	Unsigned 32
Текущая маска подсети	_	255.255.255.0	28	0x1C	Unsigned 32
Текущий IP-адрес шлюза	_	192.168.1.1	30	0x1E	Unsigned 32
Режим DHCP	0 – выкл. 1 – вкл. 2 – разовая установка кнопокй	2	32	0x20	Unsigned 16
Подключение к OwenCloud	0 — выкл 1 — вкл	0	35	0x23	Unsigned 16
Статус подключения к OwenCloud	0 – нет связи 1 – соединение 2 – работа 3 – ошибка 4 – нет пароля	_	36	0x24	Unsigned 16

Таблица 6.5 – Используемые форматы данных

Формат данных	Кол-во регистров	Размер	Описание
Unsigned 8	1	1 байт	Целое число без знака
Unsigned 16	1	2 байта	
Unsigned 32	2	4 байта	
Signed 16	1	2 байта	Целое число со знаком
Date time 32	2	4 байта	Дата/Время в секундах с 1 января 2000 г.

6.6 Ограничение обмена данными при работе с облачным сервисом

Облачный сервис OwenCloud является надежным хранилищем данных, обмен информации с которым шифруется модулем. Можно ограничить доступ и обмен данными с облачным сервисом в программе «Универсальный конфигуратор».

По умолчанию подключение модуля к облачному сервису запрещено.

Для того, чтобы разрешить подключение, следует:

- 1. Установить пароль для доступа к прибору.
- 2. Задать значение **Вкл.** в параметре **Подключение к OwenCloud** (рисунок 6.2).

1

ПРЕДУПРЕЖДЕНИЕ

Если для модуля не задан пароль, то автоматическое подключение к облачному сервису происходить не будет.

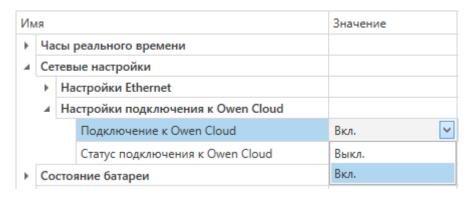


Рисунок 6.2 – Настройка автоматического подключения к облачному сервису

Если доступ к модулю через облачный сервис разрешен, то можно настроить следующие ограничения доступа (рисунок 6.3):

- Разрешение конфигурирования доступ к конфигурационным параметрам модуля;
- Управление и запись значений чтение и запись значений выходов модуля;
- Доступ к регистрам Modbus чтение и/или запись значений регистров.

Рисунок 6.3 – Настройка удаленного доступа к модулю

6.7 Режимы работы входов типа «сухой контакт»

Группа входов DI1-DI6 модуля выполняет определение логического уровня.

Для каждого входа задействован счетчик импульсов, поступающих на вход.

Таблица 6.6 - Параметры счетчика импульсов

Параметр	Значение
Разрядность	32 бит
Максимальная частота входного сигнала	400 Гц
Подавление дребезга	Вкл. / Выкл. Настраивается в программе «Универсальный конфигуратор»
Время подавления дребезга	25 мс (не настраивается)

ВНИМАНИЕ

Для работы с сигналами частотой более 40 Гц при скважности 0,5 и менее не следует включать подавление дребезга контактов, так как полезный сигнал будет принят за дребезг и пропущен.

Если счетчик переполнился, то соответствующий регистр обнуляется автоматически. Последовательность действий для принудительного обнуления приведена, см. раздел 7.8

Значения состояния дискретных входов хранятся в виде битовой маски и считываются из соответствующего регистра.

6.8 Режимы работы дискретных выходов

Каждый дискретный выход может работать в одном из следующих режимов:

- переключение логического сигнала;
- генерация ШИМ сигнала.

Для выбора режима и изменения параметров выхода следует записать значения в соответствующие Modbus-регистры.

6.9 Безопасное состояние выходных элементов

Для каждого выхода возможна установка безопасного состояния выхода.

Выход переходит в безопасное состояние, если в течение времени таймаута отсутствуют команды от Мастера сети. На выходе модуля устанавливается значение параметра **Безопасное состояние** в процентах (от 0 до 100%). Это значение определяет коэффициент заполнения ШИМ.

Таймаут задается пользователем, если установка значения таймаута равно **0**, то безопасное состояние выходов не устанавливается. Модуль при включении перейдет в состояние, которое было установлено последним до выключения, и будет находиться в нем до получения новой команды от Мастера сети или от облачного сервиса.

6.10 Контроль обрыва нагрузки

К модулю МК210-311 можно подключать дополнительную цепь для контроля подключения нагрузки. Прибор контролирует состояние выходов с помощью дополнительного резистора.

Для контроля нагрузки следует подключить высокоомный резистор (номинальное сопротивление 200 кОм) параллельно нормально разомкнутым контактам реле. Прибор определяет состояние выхода по напряжению на резисторе:

- Если при разомкнутых контактах реле (реле выключено), присутствует ток, проходящий через резистор выход работает нормально. Если падения напряжения нет и произошел обрыв нагрузки или спекание контактов реле, фиксируется авария.
- Если при замкнутых контактах реле (реле включено), ток через резистор отсутствует выход работает нормально. Если при замкнутых контактах реле ток присутствует и произошло повреждение реле или контактов, фиксируется авария.

Контроль аварии включается при настройке модуля.

ВНИМАНИЕ

Если контроль обрыва нагрузки в настройках модуля МК210-311 выключен, то резистор 200 кОм электрически не отсоединяется от цепи выхода, и небольшой ток через нагрузку продолжает протекать.

Во время фиксирования аварии загорается красный светодиод состояния выхода.

Состояние выходов записывается в регистр состояния выходов.

Схема контроля обрыва нагрузки приведена на рисунке 6.4.

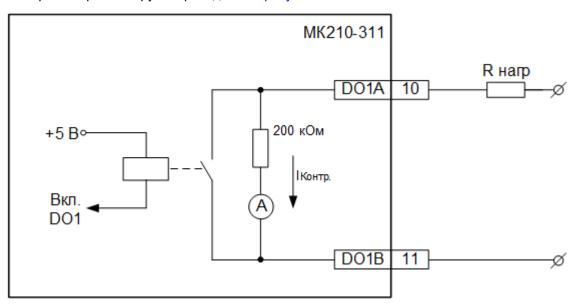


Рисунок 6.4 – Схема контроля обрыва нагрузки

Схема работает при следующих параметрах нагрузки:

- напряжение питания не менее 18 В постоянного тока при сопротивлении не более 10 кОм;
- напряжение питания не менее 90 В переменного тока при сопротивлении не более 20 кОм.

7 Настройка

7.1 Подключение к Универсальному конфигуратору

Настройка модуля производится в программе «Универсальный конфигуратор».

Прибор можно подключить к ПК с помощью следующих интерфейсов:

- USB (разъем microUSB),
- Ethernet.

Для выбора интерфейса следует:

1. Подключить модуль к ПК с помощью кабеля USB или по интерфейсу Ethernet.

ПРЕДУПРЕЖДЕНИЕ

В случае подключения модуля к порту USB подача основного питания модуля не требуется.

Питание модуля осуществляется от порта USB, выходы модуля при этом не функционируют.

В случае подключения по интерфейсу Ethernet необходимо подать основное питание на модуль.

- 2. Открыть программу «Универсальный конфигуратор».
- 3. В выпадающем меню «Интерфейс» выбрать:
 - Ethernet (или другую сетевую карту, к которой подключен модуль) для подключения по Ethernet;
 - STMicroelectronics Virtual COM Port для подключения по USB.

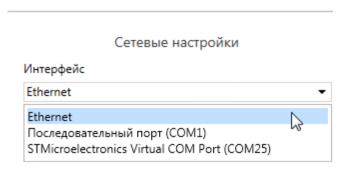


Рисунок 7.1 – Меню выбора интерфейса

Дальнейшие шаги для поиска устройства зависят от выбора интерфейса.

Чтобы найти и добавить в проект прибор, подключенный по интерфейсу Ethernet, следует выполнить действия:

- 1. Выбрать «Найти одно устройство».
- 2. Ввести ІР-адрес подключенного устройства.
- 3. Нажать кнопку «Найти». В окне отобразится модуль с указанным IP-адресом.

Значение ІР-адреса по умолчанию (заводская настройка) — 192.168.1.99.

4. Выбрать устройство (отметить галочкой) и нажать ОК. Если устройство защищено паролем, то следует ввести корректный пароль. Устройство будет добавлено в проект.

Чтобы найти и добавить в проект прибор, подключенный по интерфейсу USB, следует выполнить действия:

1. В выпадающем меню выбрать протокол Owen Auto Detection Protocol.

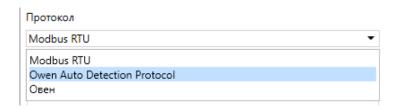


Рисунок 7.2 - Выбор протокола

- 2. Выбрать «Найти одно устройство».
- 3. Ввести адрес подключенного устройства (по умолчанию 1).
- 4. Нажать кнопку «Найти». В окне отобразится модуль с указанным адресом.
- 5. Выбрать устройство (отметить галочкой) и нажать ОК. Если устройство защищено паролем, то следует ввести корректный пароль. Устройство будет добавлено в проект.

Более подробная информация о подключении и работе с приборами приведена в Справке программы «Универсальный конфигуратор». Для вызова справки в программе следует нажать клавишу **F1**.

7.2 Подключение к облачному сервису OwenCloud

Для подключения модуля к облачному сервису следует выполнить действия:

- 1. Зайти на сайт облачного сервиса https://web.owencloud.ru.
- 2. Перейти в раздел «Администрирование» и добавить прибор.
- 3. В качестве идентификатора указать заводской номер.
- 4. В качестве токена ввести пароль.

ПРЕДУПРЕЖДЕНИЕ

Если пароль для модуля не задан, подключение к облачному сервису недоступно.

7.3 Настройка сетевых параметров

Для обмена модуля в сети Ethernet должны быть заданы параметры, приведенные в таблице:

Таблица 7.1 - Сетевые параметры модуля

Параметр	Примечание
МАС-адрес	Устанавливается на заводе-изготовителе и является неизменным.
ІР-адрес	Может быть статическим или динамическим. Заводская настройка – 192.168.1.99.
Маска ІР-адреса	Задает видимую модулем подсеть IP-адресов других устройств. Заводская настройка – 255.255.255.0 .
ІР-адрес шлюза	Задает адрес шлюза для выхода в Интернет. Заводская настройка – 192.168.1.1.

IP адрес может быть:

Статическим. ІР адрес устанавливается с помощью программы Универсальный конфигуратор или сервисной кнопки.

Для установки статического IP адреса с помощью программы Универсальный конфигуратор необходимо зайти во вкладку «сетевые настройки» и задать значение параметров «Установить IP адрес», «Установить маску подсети» и «Установить IP адрес шлюза». Режим DHCP при этом должен быть настроен как «Выкл».

Для установки ІР-адреса с помощью сервисной кнопки следует:

- 1. Подключить модуль или группу модулей к сети Ethernet.
- 2. Запустить программу «Универсальный конфигуратор» на компьютере, подключенному к той же сети Ethernet.
- 3. Выбрать в в конфигураторе вкладку «Назначение IP-адресов».
- 4. Задать начальный IP-адрес для первого модуля из группы модулей.
- 5. Последовательно нажимать на модулях сервисные кнопки, контролируя результат в окне конфигуратора. При этом в окне конфигуратора будет отображаться информация о модуле, на котором была нажата кнопка, этому модулю будет присваиваться заданный статический IP-

адрес и другие параметры сети. После этого в программе автоматически увеличивается адрес на 1.

Для назначения статического IP-адреса с помощью кнопки режим DHCP должен быть настроен как «Разовая установка кнопкой».

ПРЕДУПРЕЖДЕНИЕ

Если установка IP-адреса с помощью сервисной кнопки не функционирует, то следует установить значение **Режим DHCP** — **«Разовая установка кнопкой»** в программе «Универсальный конфигуратор» (установлено по умолчанию).

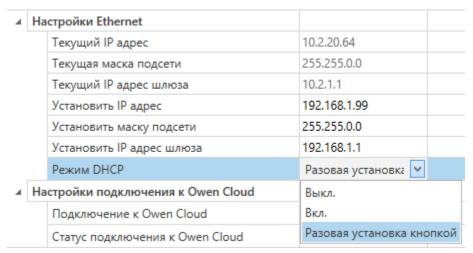


Рисунок 7.3 - Настройка параметра «Режим DHCP»

С помощью сервисной кнопки можно установить IP-адреса сразу для группы модулей (см. справку к программе «Универсальный конфигуратор»).

Динамический IP-адрес используется для работы с облачным сервисом и не подразумевает работу с Мастером Modbus TCP. Для использования динамического IP-адреса следует включить конфигурационный параметр **Режим DHCP** — **Вкл**.

ПРЕДУПРЕЖДЕНИЕ

Для применения новых сетевых настроек необходима перезагрузка модуля. Если модуль подключен по USB, его также требуется отключить.

7.4 Пароль доступа к модулю

Для ограничения доступа к чтению и записи параметров конфигурации и для доступа в облачный сервис используется пароль.

Установить или изменить пароль можно при настройке с помощью программы «Универсальный конфигуратор».

В случае утери пароля следует восстановить заводские настройки.

По умолчанию пароль не задан.

7.5 Обновление встроенного программного обеспечения

Встроенное программное обеспечение обновляется следующими способами:

- по интерфейсу USB;
- по интерфейсу Ethernet (рекомендуется).

Для обновления по USB следует выполнить действия:

- 1. В момент включения питания модуля нажать и удерживать сервисную кнопку. Модуль перейдет в режим загрузчика.
- Обновить ПО с помощью специальной утилиты. Утилита доступна на сайте www.owen.ru.

Для обновления по Ethernet следует:

- 1. В программе «Универсальный конфигуратор» нажать кнопку Прошить устройство.
- 2. Выполнять указания программы (файл встроенного ПО размещен на сайте www.owen.ru);
- 3. Перезагрузить модуль.

Во время обновления по Ethernet проверяется целостность файла встроенного ПО и контрольной суммы.

ПРЕДУПРЕЖДЕНИЕ

Для завершения обновления необходима перезагрузка модуля. Если модуль подключен по USB, его также требуется отключить.

ВНИМАНИЕ

Для обновления встроенного программного обеспечения через программу "Универсальный конфигуратор" необходимо отключить прибор от удаленного облачного сервиса OwenCloud.

7.6 Восстановление заводских настроек

ВНИМАНИЕ

После восстановления заводских настроек все ранее установленные настройки, кроме сетевых будут удалены.

Для восстановления заводских настроек и сброса установленного пароля следует выполнить действия:

- 1. Включить питание прибора.
- 2. Нажать и удерживать сервисную кнопку более 12 секунд.
- 3. Выключить и включить прибор.

После включения прибор будет работать с настройками по умолчанию.

7.7 Настройка часов реального времени

Значение часов реального времени (RTC) можно установить или считать с модуля через регистры Modbus, а также с помощью программы «Универсальный конфигуратор» (см. справку к программе).

Для установки нового времени через регистры Modbus следует выполнить действия:

- 1. Записать значение времени в соответствующие регистры.
- 2. Установить на время не менее 1 секунды значение 1 в регистре обновления текущего времени.
- 3. Записать в регистр обновления текущего времени значение 0.

Следующая запись текущего времени может быть произведена через 1 секунду.

7.8 Принудительное обнуление счетчика

Если счетчик состояний входа переполнился, то соответствующий регистр обнуляется автоматически. Для принудительного обнуления счетчика следует:

- 1. Записать значение 1 в регистре сброса значения счетчика соответствующего входа.
- 2. Выдержать паузу не менее 15 мс.
- 3. Записать значение 0 в регистр сброса значения счетчика.

Счетчик обнулится в течение 15 мс после записи значения «0» в регистр сброса.

8 Техническое обслуживание

8.1 Общие указания

Во время выполнения работ по техническому обслуживанию прибора следует соблюдать требования безопасности из раздела 3.

Техническое обслуживание прибора проводится не реже одного раза в 6 месяцев и включает следующие процедуры:

- проверка крепления прибора;
- проверка винтовых соединений;
- удаление пыли и грязи с клеммника прибора.

8.2 Замена батареи

В модуле для питания часов реального времени используется сменная батарея типа CR2032.

Следует заменить батарею в случае наступления хотя бы одного из событий:

- мигает светодиод «Авария» (засвечивается на 200 мс с интервалом 3 секунды). После выключения питания заряда батареи хватит приблизительно на 2 недели работы часов реального времени;
- прошло 6 лет с момента замены батареи.

Для замены батареи следует:

- 1. Отключить питание модуля и подключенных устройств.
- 2. Снять модуль с DIN-рейки.
- 3. Поднять крышку 1.
- 4. Выкрутить два винта 3.
- 5. Снять колодку 2, как показано на рисунке 8.1.

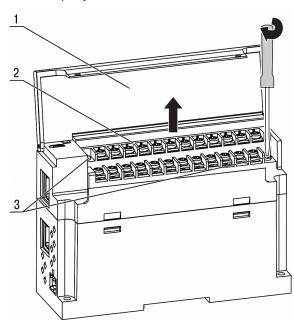


Рисунок 8.1 - Отсоединение клемм

6. Поочередно вывести зацепы из отверстий с одной и другой стороны корпуса и снять верхнюю крышку.

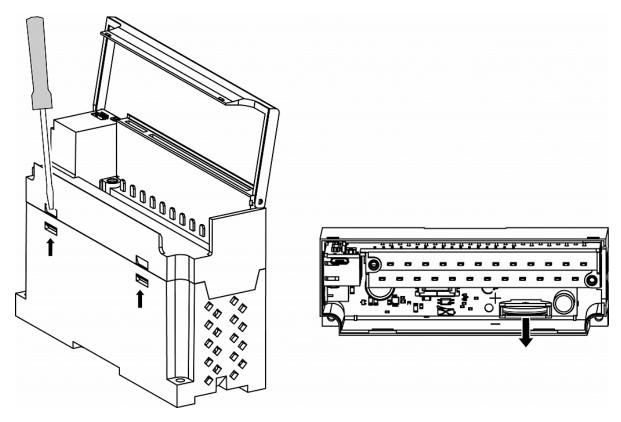


Рисунок 8.2 - Замена батареи

- 7. Заменить батарею. Рекомендуемое время замены батареи не более 1 минуты. Если в приборе батарея будет отсутствовать более долгое время, следует ввести корректное значение времени.
- 8. Сборку и установку следует осуществлять в обратном порядке.

ВНИМАНИЕ

Запрещается использовать батарею другого типа. При установке батареи следует соблюдать полярность.

После сборки и включения модуля следует убедиться в корректности показаний часов. При необходимости следует скорректировать показания часов реального времени в программе «Универсальный конфигуратор».

При выкручивании винтов крепления клеммная колодка поднимается, поэтому во избежании перекоса рекомендуется выкручивать винты поочередно по несколько оборотов за один раз.

9 Комплектность

Наименование	Количество
Прибор	1 шт.
Паспорт и Гарантийный талон	1 экз.
Краткое руководство по эксплуатации	1 экз.
Диск с ПО	1 шт.
Кабель патч-корд UTP 5e 150 мм	1 шт.
Клемма питания 2EGTK-5-02P-14	1 шт.
Заглушка разъема Ethernet	1 шт.

ПРЕДУПРЕЖДЕНИЕ Изготовитель оставляет за собой право внесения дополнений в комплектность прибора.

10 Маркировка

На корпус прибора нанесены:

- наименование прибора;
- степень защиты корпуса по ГОСТ IEC 61131-2;
- напряжение питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);
- страна-изготовитель;
- заводской номер прибора;
- МАС-адрес.

На потребительскую тару нанесены:

- наименование прибора;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);
- страна-изготовитель;
- заводской номер прибора.

11 Упаковка

Упаковка прибора производится в соответствии с ГОСТ 23088-80ДСТУ 8281:2015 в потребительскую тару, выполненную из коробочного картона по ГОСТ 7933-89.

Упаковка прибора при пересылке почтой производится по ГОСТ 9181-74.

12 Транспортирование и хранение

Прибор должен транспортироваться в закрытом транспорте любого вида. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций. Транспортирование приборов должно осуществляться при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.

Прибор следует перевозить в транспортной таре поштучно или в контейнерах.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 11 (Л) по ГОСТ 15150-69. В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

13 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – 24 месяца со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5 тел.: +7 (495) 641-11-56, факс: (495) 728-41-45 тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru

отдел продаж: sales@owen.ru

www.owen.ru 1-RU-22947-1.8