Робототехника на основе компонентов ОВЕН

к.т.н. Сергей Мурин, доцент к.т.н. Алексей Калюжный, доцент Анастасия Мурина, инженер

Балаковский институт техники, технологии и управления (БИТТУ), г. Балаково

Балаковский институт техники, технологии и управления (БИТТУ) стал подготовительной платформой молодых кадров для предприятий Саратовского региона. По окончании вуза выпускники кафедры «Технология и автоматизация машиностроения» владеют не только теоретическими знаниями, но и практическими навыками работы, позволяющими дипломированному инженеру с успехом решать задачи на реальных промышленных объектах. Именно благодаря такой подготовке выпускники кафедры работают на крупнейших предприятиях региона, в том числе на Балаковской АЭС, Саратовской ГЭС, ОАО «Балаковорезинотехника», ОАО «Волжский дизель им. Маминых», ОАО «Балаковский завод запасных деталей», ЗАО «ХИМФОРМ», «Балаковский судоремзавод» и многих других.

Многим российским вузам, готовящим молодых специалистов, владеющих знаниями и опытом работы с современными микропроцессорными средствами автоматизации, требуется масштабная модернизация лабораторной базы. Не стал исключением и Балаковский институт техники – БИТТУ. Преподаватели кафедры «Технология и автоматизация машиностроения», узнав о программе поддержки вузов, реализуемой приборостроительной компанией ОВЕН, решили создать новый лабораторный стенд на основе программируемого логического контролера.

Лабораторный стенд

Лабораторная установка состоит из пневмоманипулятора, системы управления и узла подготовки воздуха (фото 1). Манипулятор - это две руки, расположенные в одной плоскости, с пятью степенями свободы, что позволяет осуществлять: выдвижение-втягивание, подъемопускание, поворот рук, замыкание и размыкание захватов. Движения звеньев манипулятора осуществляются за счёт энергии сжатого воздуха, который подается в пневмоцилиндры через электропневматические клапаны с дросселями. Начальные и конечные положения звеньев фиксируются электромагнитными контактами, которые, замыкаясь, передают электрический

> динамических нагрузок при подходе звена манипулятора к концевому упору установлены гидравлические демпферы. Характеристики робота МП-11 приведены в таблице. Функциональная схема системы управлероботом ния МП-11 пред-

> > ставлена

рис. 1.

Аппаратную часть системы составляют:

- » контроллер ОВЕН ПЛК100;
- » одноканальный регулятор ОВЕН ТРМ1;
- » схема усиления управляющих сигналов:
- » датчик давления ОВЕН ПД100;
- » блок питания ОВЕН БП60Б;
- » твердотельное реле;
- » электропневматические клапаны. датчики положения;
- » компьютер.

Система работает следующим образом. ПЛК формирует управляющие сигналы движения звеньев манипулятора согласно программе. Сигналы усиливаются и подаются на электропневматические клапаны. Сжатый воздух приводит в движение манипулятор. При достижении конечного положения срабатывает электромагнитный контакт и передаёт сигнал о выполненном движении.

Для поддержания давления воздуха в пневмосистеме манипулятора в диапазоне 0,3...0,5 МПа используется локальная система управления. Датчик ПД100 измеряет текущее значение давления в пневмосистеме и передаёт сигналы двухпозиционному регулятору ТРМ1, который управляет включением/отключением компрессора с трехфазным двигателем через твердотельное реле, тем самым поддерживая давление воздуха в пневмосистеме в указанных пределах.

На новом стенде студенты выполняют несколько лабораторных работ. В одной работе студенты осваивают

Фото 1. Пневморобот МП-11

Таблица. Технические характеристики робота МП-11

Характеристики	Значение
Грузоподъёмность, кг	1
Масса заготовки, переносимая одной рукой, кг	0,5
Количество степеней подвижности	5
Число точек позиционирования по каждой степени подвижности	2
Погрешность позиционирования	± 0,05
Разворот рук, град	20100
Перемещение рук:	
горизонтальное, мм	0200
вертикальное, мм	065
сдвиг захвата, мм	25
поворот, град	0200
Тип привода	пневматический
Давление воздуха, МПа	0,30,5
Тип системы управления	цикловой
Масса манипулятора, кг	72

принцип построения циклограммы движения звеньев манипулятора и её реализации в программном виде. Для этого на компьютере пишется программа в среде CoDeSys на языке SFC. После успешно выполненной отладки программа записывается в память ПЛК100 и воспроизводится в автоматическом режиме. Под управлени-

ем программы робот-манипулятор перемещает детали цилиндрической формы из наклонного механического буфера в приёмное устройство.

В другой лабораторной работе студенты знакомятся с принципом двухпозиционного регулирования давления в пневмосистеме, рассматривают функциональную и структурную схемы системы управления с обратной отрицательной связью и производят выбор элементной базы для её реализации по каталогам OBEH.

При выполнении курса лабораторных работ студенты получают навыки:

- » работы с промышленной сетью Ethernet и современными контроллерами;
- » подготовки программ на языке SFC в среде CoDeSys;
- » освоения принципа циклового программного управления.

Полученные навыки позволят студенту в будущем не только правильно подбирать компоненты автоматизации систем управления для робототехнических объектов, но и разрабатывать управления, создавать алгоритмы программы для обслуживания станков, прессов, литейных машин и др. современного оборудования. Получаемые знания применимы повсеместно, где используются манипуляционные роботы, выполняющие перемещение заготовок, транспортировку в отведённое место и т.п.

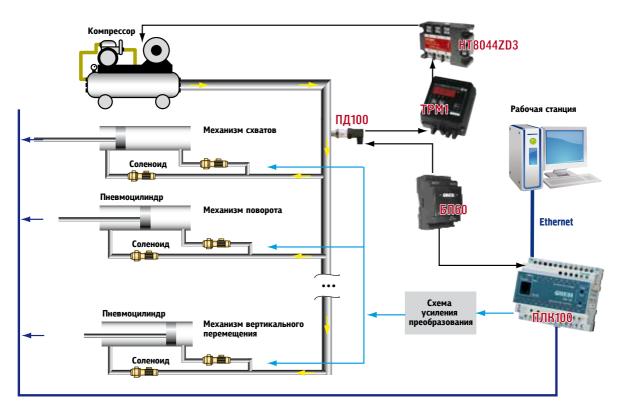


Рис. 1. Функциональная схема системы управления роботом МП-11